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1 Abstract

Maintaining the precise geostationary position of a satellite during its oper-
ational lifetime is a critical challenge in satellite mission design. Traditional
approaches to station-keeping rely on mechanisms such as thruster orientation
or thrust-pointing strategies to maintain orbital stability and angular momen-
tum management. However, these solutions add design complexity, mechanical
vulnerabilities, and increased costs and mass.

This work presents a novel deterministic algorithm tailored for fixed-thrust
geostationary satellites using electric thrusters. The proposed method provides a
deterministic algorithm for computing station-keeping maneuvers and a maneu-
ver planning scheme. The algorithm works to accommodate for all combinations
of position or direction of thruster and is addressing orbit control and angular
management at the same time. This approach allows building maneuver plan-
ning to achieve similar orbit management and angular momentum management
performance compared to traditional methods while simplifying satellite design.

We will present our new maneuver scheme named hopping scheme. This
scheme allows compensating for perturbation by hopping back and forth in ec-
centricity and angular momentum to achieve no intersection of burn during the
station keeping cycle. With this, we manage to stay in 12∗10−3 deg geostation-
ary box size and below 15 Nms over the station keeping cycle, assuming a 1000
kg spacecraft. This hopping scheme is flexible, accommodating a large type of
requirement via variation of its parameters.

This paper aims to provide readers with an understanding of the algorithm’s
development, its practical applications, and performance metrics. By leverag-
ing this approach, mission designers can simplify satellite architectures while
maintaining mission reliability.

2 Introduction

Geostationary satellites are indispensable for telecommunications, weather fore-
casting, and Earth observation due to their ability to maintain a fixed position
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relative to the Earth’s surface. However, sustaining this position requires con-
stant station-keeping maneuvers to counteract perturbations caused by 3-body
perturbation from the Moon and the Sun, gravitational irregularities, solar ra-
diation pressure, and other environmental forces. Traditional station-keeping
solutions rely heavily on adjustable thrusters and thrust-pointing mechanisms,
which introduce significant complexity, cost, and mass, in addition to suscepti-
bility to mechanical failures over time.

This research introduces a novel deterministic algorithm for fixed-thrust geo-
stationary satellites that eliminates the need for adjustable thrusters while en-
suring precise station-keeping performance. Although developed with electric
propulsion in mind, it can be technically used for all kinds of propulsion. The
algorithm is also design-agnostic, meaning it can be implemented on a wide
range of satellite platforms, making it particularly appealing for smallsat mis-
sions where simplicity and cost-efficiency are paramount.

The maneuver determination algorithm can be summarized as follows: The
inputs to the algorithm are spacecraft design and required changes in orbital
elements and angular momentum. The design inputs build a system of equations
based on thrusters direction and thrusters position with respect to the center of
mass. This system of equations is completed by the required performance of the
maneuver. By integrating the angular momentum into the system of equations,
we make a fully determined system that enables us to have a deterministic
solution and bypass thrusters orientation or pointing mechanism to take care
of the angular momentum with requirement definition without any sacrifice in
performance.

This algorithm is to be seen as a foundational building block in the maneuver
planning scheme. It needs to be incorporated into a larger algorithm to be able
to produce a full maneuvering scheme. An optimization layer could be added
to insure fuel efficiency for the mission’s lifetime, or a validation step could be
added to ensure maneuvers avoid operational constraints, such as avoiding burn
during an eclipse.

To demonstrate the algorithm’s effectiveness, a new maneuver scheme, named
the ”hopping maneuver,” has been developed. This strategy allows the satellite
to remain within a geostationary box of 1.2 × 10−3 deg while keeping angular
momentum below a 15 Nms threshold during the station-keeping cycle. The
”hop” maneuver works by alternately adjusting eccentricity and angular mo-
mentum, balancing the effects of orbital perturbations. A typical cycle consists
of two maneuvers: a ”hop forth” and a ”hop back,” both of which occur within
a single day, while ensuring that maneuvers do not overlap or interfere with
each other. The size of the hop is a tunable parameter that, together with the
spacecraft design, is customized to meet specific mission requirements, such as
fuel constraints or mission lifetime.

The deterministic algorithm for fixed-thrust station-keeping offers a com-
pelling alternative to traditional thruster pointing or thruster orientation-based
approaches. By simplifying satellite design, this approach aims to transform
station-keeping strategies, particularly for smallsat missions where cost, mass,
and operational simplicity are critical.
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At the SmallSat 2025 Conference, attendees will gain insights into the devel-
opment of this algorithm, its practical applications, and its potential to revolu-
tionize station-keeping operations in the context of smallsat constellations. The
algorithm’s ability to integrate seamlessly with existing and future propulsion
technologies, as well as its scalability across diverse satellite platforms, makes
it a compelling solution for a wide range of space mission scenarios.

3 Introduction of the physical model

The coordinate system used in this algorithm is inspired by [5], which is based
on the classical orbital elements: semimajor axis (a), eccentricity (e), inclination
(i), right ascension of the ascending node (Ω), argument of perigee (ω), and true
anomaly (ν). These elements describe the elliptic orbit of unperturbed motion,
that is, an orbit only influenced by a spherically symmetric gravitational field
around a body, Earth in this case.

The orbital elements are defined in relation to the inertial system called ECI
(Earth-centered inertial). The origin is in the center of mass of Earth and is
fixed with respect to the stars. The x-y-plane is in the equatorial plane, where
x points towards the sun at vernal equinox and y is 90° east from X. The axe
Z is pointing north, normal to the equatorial plane.

The semimajor axis is defined by the shortest distance to the center of Earth,
perigee rP , and the longest, apogee rA, a = (rA + rP )/2. The eccentricity
describes how elongated the ellipse is, where e = 0 is a circular orbit. It is
defined by e = rA

a − 1 and satisfies the inequality 0 ≤ e < 1. The angle
between the orbital plane and the equator plane is the inclination of the orbit.
For a geostationary orbit, it is close to 0. The orientation of the inclined orbit
is determined by the right ascension of the ascending node (RAAN), which is
the angle between the ECI x-axis and the ascending node. Furthermore, the
argument of perigee is the angle between the ascending node and the perigee.
Lastly, the true anomaly determines the current position of the spacecraft, by
the angle around the origin, starting from perigee.

In this algorithm, eccentricity and inclination are treated as vectors. The
three-dimensional inclination vector is a normalized vector normal to the orbital
plane. The projection of this vector onto the ECI x-y-plane is,

i = (sin(i) sin(Ω),− sin(i) cos(Ω)) (1)

and for small inclinations it can be linearized by sin(i) ≈ i, to

i = i(sin(Ω),− cos(Ω)). (2)

The eccentricity can be defined in the same manner,

e = e(cos(Ω + ω), sin(Ω + ω)). (3)

For a geostationary orbit of unperturbed motion, the spacecraft would be at
rest with respect to Earth. When introducing perturbations, the motion relative
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to this ideal position can be described by the eccentricity and inclination vector
and drift. Drift is the mean longitude drift rate, defined by

D = −1.5δa
A
, (4)

where A is the semimajor axis of the unperturbed geostationary orbit, 42164.2
km, and δa is deviation from that, δa = a−A. D is a dimensionless parameter.
To get the longitude drift in degrees/day, D has to be multiplied by 361 deg/day.

The local coordinate system of the spacecraft used in this algorithm is RTO:
radial, tangential, and orthogonal, shown in 1. This system rotates in ECI as
the spacecraft rotates around Earth. It is defined in ECI by the time dependent
sideral angle, sm, of the spacecraft,

r = (cos(sm, sin(sm), 0) (5)

t = (− sin(sm, cos(sm), 0) (6)

o = (0, 0, 1) (7)

(8)

Figure 1: Definition of the RTO orbit frame with respect to the ECI orbit frame

4 Algorithm

4.1 Overall Overview

The general scheme of maneuver computations goes in three steps. The first step
is to determine how much change in orbital element and angular momentum the
maneuver should achieve. The amount is determined such that the maneuver
will compensate the various perturbation undergone by the spacecraft, correct
for potential error in the position of the spacecraft or compensate for buildup
in angular momentum. All of these parameters may be pondered by strategies
to optimize fuel over a longer period of time. Generally, it is done on ground
via orbit porpagation or perturbation estimation.

The second step is the determination of the maneuver that can achieve the
required performance defined by the previous step. It is using a deterministic
algorithm which takes into account the design to produce the correct maneuver.
This step produces when and for how long each thruster should be fired.
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The third step is the post processing step, where the output of the second
step is adapted to the need and requirement of the missions. For example, it
may check if burns are overlapping and either reduce them or prolong the station
keeping cycle to avoid the intersection (assuming that two thrusters cannot burn
for the same time for example). The output of this step is the final burn location
and duration.

4.2 The Hopping Manoeuver scheme

4.2.1 Inner working

The scheme that we have sought to develop is called the “hopping” scheme. The
cycle consists of two sets of maneuvers that together can compensate perturba-
tion and errors. A maneuver is defined as being 4 burns, one per each thruster.
To avoid overlapping burn, we decide to make an “hop” in eccentricity and in-
plane angular momentum and then “hop” back in addition of the compensation
of the perturbation and error. To give an example, the first maneuver could hop
of ex = 0.5× 10−5, ey = 0, hx = 0 Nms and hy = −7 Nms, and then the second
maneuver could hop back of ex = −0.5× 10−5, ey = 0, hx = 0 Nms and hy = 7
Nms. One could formulate the change in eccentricity and angular momentum
in a more general way by writing ∆M1 = ∆/2 + ∆hop, where ∆M1 is change
induced by the first maneuver, and ∆M2 = ∆/2−∆hop, where ∆M2 is change
induced by the second maneuver. Thus, the cycle of the two maneuver would
acheive a change of ∆M1 +∆M2 = ∆.

A way of manually implementing this can be achieved by alternating the
sequence of burn. For example, a typical first maneuver sequence should be
firing NW then NE then SE then SW, and then switching the order to NE
then NW then SW then SE. The example given can be used in real life only if
combination of thruster position and direction is symmetric enough.

In general, to achieve to hop back and forth, one should search the size of
the hop in eccentricity and in in-plane angular momentum. Those should be
determined by either optimization scheme or trial and error by checking if the
maneuver algorithms can find a set of burns capable of doing the hop in and
the hope back. The hope sizes depend on the mission requirements, design of
the spacecraft and size of the reaction wheel.

4.2.2 Example

Satellite settings We assume an earth pointing spacecraft with an allowed
attitude bias up to a few degrees. On the earth pointing platform the thrusters
are assumed to be symmetrically positioned and oriented such that the resulting
thrust and torque directions are linearly independent. The configuration of fixed
thrusters is illustrated in Figure 2 and Figure 3 which show the two redundant
branches of four thrusters and their schematic positions along with their plume
directions. The size is indicated by letters a, b, c and the (absolute) angle
toward the north south axis is for all thrusters.
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Figure 2: Schematic of the two thruster branches (in red and blue) with plume
directions and the spacecraft coordinate system as well as the orientation of the
spacecraft on orbit.

Figure 3: The spacecraft in different projections and with indications of the
positions of the thrusters with dimensions indicated by, a, b and c. The centre
of gravity is inside the body of the spacecraft and the thrust vectors are inten-
tionally directed off COG

Here we will assumed that the absolute angle toward the north south axis is
45° for the north poiting thrusters, and 135° for the south thrusters, the thrust
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direction is assumed purely tangential (along track). We will use the following
dimension : a = 0.6m, b = 0.5m, c = 0.1m, with a mass of 1000 kg. We will also
assume no plume inpengement nor thruster missalignement. Regarding thruster
performance, we assume 15mN of thrust provided by all the thrusters. Finaly
the cross section of the satellite is 13 m2

Performances A typical result of this scheme can be seen in the following
pictures. The scheme uses 6 maneuvers over 14 days, so 3 cycles of a pair of
hops. The maneuvering days occur almost every other day, leaving the Sundays
for orbit determination. In the figure 4 we can see the alternating sequence of
the burn.

Figure 4: Maneuvers per day during 14 days

To better visualize the ”hops” we can look at the Eccentricity plot in Figure
5. We can see two movements starting from (0, 0) and going to (−1× 10−4, 0),
via the bottom arcs, and then we hope back via the top arcs. This figure also
provides proof that the burns are not intersecting, since each color is an arc
from a circle. If they were two thrusters burning at the same time, one would
see a straight evolution instead.

Since, we are hoping in the angular momentum plane, we also see the back
and forth in Figure 6, where the plateau value are at different level after each
maneuver for the X and Y component. The Z component is only a straight
line since the simulation is modeling for an angular momentum perturbation on
that axis.

This technic leads to the following performance in term of position over time
seen in Figure 7 and position withing the geostationary box in Figure 8. With
both figure, we see that we are well within the box, with little to no build up
over the 14 days period.
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Figure 5: Evolution of Eccentricity and Inclination over time

Figure 6: Angular momentum over time

4.3 Manoeuver Determination algorithm

At the heart of our Algorithm is our new way of computing manoeuver capable of
achieving the desired change in the orbital element. To do that we have writen
down all the equations and simplify them as much as possible before solving
them numerically, via the symbolic MATLAB toolbox. A details version of
which equations and how we approch to simplify them is done in the appendix,
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Figure 7: Position over time

Figure 8: Position evolution in the geostationary boxes

we will give a brief overview of the algorithm here in this subsection.
The first step is to derived the equations linking for each thruster burn to

the variation of each state variable. One will obtain two sets of equation a time
dependent one or depending of the sideral angle of the burn and the other one
time independent. Then, one need to invert the systems of equations since one is
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interested to find the thrust parameters in function of the desired changes in the
state variables (orbital element and angular momentum). One can to that by
first using a Gauss elimination process to simply the two sets of equations. Then,
we can combine the two sets of equations to obtain two polynomial equations
depending of the information of one thruster burn (duration of the burn and
sideral angle of the burn).

The second step is solving the equation numerically. The two polynomial
equations are then solve using the Groebner algorithm [2] to simplify the poly-
nomial system and then use MATLAB symbolic toolbox to solve it.

The third step is to generated all information about all burns by reinjecting
the solution into the equations and solving the system to get the set of the four
burns.

It is to be noted that the design of the satellite has a direct effect on the ease
of solving the equation. Major simplifications can occur from general equations
by adding symmetry in thruster positions or directions. A difference could be
seen as the different set of equation presented in the Appendix.

5 Consideration

5.1 Sizing

The sizing of the system is a critical aspect of the design process. The propulsion
system, including the reaction wheel, must be appropriately sized with respect
to the following factors: the direction of the thrusters, their placement, and the
thrust level generated by the thrusters.

These considerations, along with mission duration and, to some extent, the
spacecraft’s longitudinal position on the geostationary ring, determine the total
impulse required. This, in turn, influences the amount of propellant needed,
which is a function of both the specific impulse and propellant mass.

For station-keeping requirements, the primary factor is the thrust direction.
The angle between the thruster direction and the North-South axis is the main
driver for fuel consumption and efficiency. This angle can be influenced by
factors such as plume impingement and the accommodation of the thrusters.
Typically, an angle of 45° is used for electric thrust systems.

Beyond the North-South angle, the positioning of the thrusters also impacts
the propellant budget and the simplicity of solving the governing equations.
Thruster placement is primarily determined by the spacecraft’s dimensions and
the practical constraints for accommodation. Careful consideration must be
given to thruster positioning and thruster direction, as it directly affects angular
momentum management via the size of the moment arm, and, consequently, this
will drive the angular momentum bandwidth required by the algorithm.
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5.2 Flexibility

The maneuvering scheme provides a wide range of variations to accommodate
mission constraints. The first parameter that can be adjusted is the size of the
hop. Once the burn parameters are determined, the number of cycles per week
can be varied, allowing for shorter burns, which results in slight efficiency gains
and more precise control of the spacecraft’s trajectory. Additionally, the number
of burns performed each day can be modified. For example, the setup described
above uses four burns in one day, but this could be adjusted to two burns spread
over two days, while still ensuring one burn per thruster during each hop. This
approach helps avoid overlapping burns, which becomes particularly useful when
the thruster positions introduce a larger radial component.

6 Conclusion

This paper demonstrates how the Hopping scheme and the deterministic algo-
rithm developed by Vinterstellar can offer a simpler alternative to spacecraft
configuration. By using a fixed thruster configuration rather than a thruster
pointing or orientation mechanism, our approach enables simultaneous control
of both angular momentum and orbital parameters. The algorithm allows for a
wide range of maneuver options, offering the flexibility to accommodate a variety
of mission constraints. Whether it is performing additional cycles, extending
mission operations over two days, or adjusting the spacecraft’s trajectory to
meet new requirements, the tuning of all the parameters of the algorithm to-
gether with the spacecraft design are determinants for a successful usage of our
algorithm. Hence, by simplifying satellite design, this approach aims to trans-
form station-keeping strategies, particularly for smallsat missions where cost
mass and operational simplicity are critical.
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A Thruster effects

A.1 Manoeuvre effect on orbital element

According to [5], a near geostationary spacecraft orbital element change as spec-
ify below, when we apply a change in velocity ∆V on the spacecraft at the
sidereal angle sb.

If we have a radial thrust:

∆e =
∆Vr
V

(
sin(sb)
−cos(sb)

)
(9)

If we have a tangential thrust:

∆e =
2∆Vt
V

(
cos(sb)
sin(sb)

)
(10)

∆D =
−3∆Vt
V

. (11)

If we have an orthogonal velocity change:

∆i =
∆Vo
V

(
sin(sb)
−cos(sb)

)
(12)

Instead of writing the eccentricity and inclination in a vector form, we will
write them as belonging to the complex plane. We will use j as our imaginary
unit to distinguish with the inclination. The concept of expressing the problem
in the complex plane was proposed by [5] for the inclination and expended to
the full problem including angular momentum by Emil Vinterhav in his prior
work on the problem.

Using the following trigonometric changes:

sin(sb)− jcos(sb) = cos(π/2− sb)− jsin(π/2− sb)
= cos(sb − π/2) + jsin(sb − π/2)
= exp(j(sb − π/2))
= −jexp(j(sb)),

we can express the change in inclination in equation 12 and the change in eccen-
tricity in both equation 9 and 10 in the complex plane, thus resulting in those
equations:

∆i =
∆Vo
V

(−j) exp(jsb) (13)

∆e =
2∆Vt
V

exp(jsb) +
∆Vr
V

(−j) exp(jsb) (14)

∆D =
−3∆Vt
V

. (15)
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We can reformulate this by the following matrix equation: ∆i
∆e
∆D

 =
1

V

 0 0 −j exp(jsb)
−j exp(jsb) 2 exp(jsb) 0

0 −3 0

∆Vr
∆Vt
∆Vo

 . (16)

Those equations are valid for any spacecraft configuration, the geometry of
the spacecraft will be taken in account when expressing the change in velocity
vector in function of the trust applied.

A.2 Conservation of the angular momentum

Firing a thruster changes the angular momentum of the spacecraft, except if the
thrust direction is aligned with the rotational axis of the spacecraft. We will
write the change in angular momentum ∆h, in the ECI coordinate frame which
has the following properties: it is center at the Earth center of mass and the axis
are fixed with respect to the starts. This is also a inertial system since it is not
accelerating. Although this is not the easiest co-ordinate system to compute the
angular momentum in. For that reason, we will use a co-ordinate system that
is attached to the spacecraft body frame. The body frame co-ordinate system
is center on the center of gravity of the satellite, the x-axis has for direction
from the Earth to the center of gravity, the y-axis is along the trajectory of the
spacecraft, and the z-axis is from south to north. That way one every orbit the
axis of the two coordinates system are aligned.

So, for the computation we will first compute the change in angular mo-
mentum in the satellite co-ordinate system and then transfer it to the fix Earth
centred co-ordinate system via the following transfer matrix:

P =

cos(s) −sin(s) 0
sin(s) cos(s) 0

0 0 1

 . (17)

As previously, s is the sidereal angle of the spacecraft that change with time.
We can note that when s = 0 we are in the situation where our two co-ordinates
system are aligned.

It is to be noted, that transferring all the vector first and then computing
the change in angular momentum is equivalent to first computing the change in
angular momentum and then transferring the vector to the correct co-ordinate
system, since we have the following proposition:

Proposition 1. Let a, b ∈ R3 and P be a rotation matrix. Then we have the
following hold:

P(a× b) = (Pa)× (Pb).

The last remark we need to address before, detailing the general equation is
that we only care about the change in the spacecraft angular momentum induce
by a torque resulting from a thrust and not the orbital angular momentum. We
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do so because the later include inclination and longitude drift in its formulation,
and we do not want to take those changes into account again.

A change in angular momentum implied by kth thruster satisfies this equa-
tion:

∆h = P (rG→k ×m∆V ) , (18)

where h is the angular momentum, rG→k is the vector from the center of mass
of the spacecraft to the thruster k.

A.3 Relation between the thrust impulse and the change
in the state space variables

For a given configuration of thruster, we have that:

∆V =
1

m
[nk]T , (19)

where m is the mass of the spacecraft, [nk] is a matrix whose columns are the

thrust direction of each thruster k, and T =

T1...
Tn

 where each Tk represent

the kth thruster impulse, and we have that

Tk = F∆t, (20)

where ∆t is the time duration of the burn, and F is the force of the thruster,
we assume that all the thruster output the same force.

Remark: For our application it is enough to solve the problem for impulsive
thrust, meaning a thrust very short like a Dirac. This can also be seen as a
thrust with a high force. However, by the design of the spacecraft we have low
thrust, so we will apply a low force for a longer period of time. Fortunately,
there exist a way to go from the continuous thrust to the impulsive thrust

by multiplication of 2 sin(sb)
sb

where sb is the sidereal angle corresponding to
the middle of the burn, this just a multiplicative constant that arise from the
integration of the formulas. Thus, from now on, we will consider only impulsive
thrust.

If we put everything together, we have the following change: ∆i
∆e
∆D

 =
1

mV

 0 0 −j exp(jsb)
−j exp(jsb) 2 exp(jsb) 0

0 −3 0

 [nk]T (21)

∆h = mP

((
n∑

k=1

rG→k

)
× ([nk]T )

)
. (22)
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These equations represent the thrust effect on the state space. But, for
practical purpose, one is interested to know how which thrusts to apply to get
some specific change in the orbital element. Thus, one want to inverse the
above relation. It is to be noted that just by looking at the matrix size, it is
impossible to have left inverse matrix and easily solve the problem, but we will
see in the following section that one can still determine the thrust impulses via
some geometric computation.

B Example on a simple design

B.1 Writing down the equations

B.1.1 State space variable in function of thrust

For the configuration of 4 thrusters in NW, NE, SE, SW position we have that:

TNW = TNW

 0
1√
2

− 1√
2

 = TNWnNW , TNE = TNE

 0
− 1√

2

− 1√
2

 = TNEnNE

TSE = TSE

 0
− 1√

2
1√
2

 = TSEnSE , TSW = TSW

 0
1√
2
1√
2

 = TSWnSW .

Thus, we have that

∆V =
1

m
√
2

 0 0 0 0
1 −1 −1 1
−1 −1 1 1

 T . (23)

Then combining with the equation 16, we have that: ∆i
∆e
∆D

 =
1

mV

 0 0 −j exp(jsb)
−j exp(jsb) 2 exp(jsb) 0

0 −3 0


× 1√

2

 0 0 0 0
1 −1 −1 1
−1 −1 1 1

 T , (24)

which is by simplification equal to: ∆i
∆e
∆D

 =
1

mV
√
2

j exp(jsb) j exp(jsb) −j exp(jsb) −j exp(jsb)
2 exp(jsb) −2 exp(jsb) −2 exp(jsb) 2 exp(jsb)
−3 3 3 −3

 T .
(25)
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B.1.2 Expression of the change in angular momentum

We have the following position of the Thruster:

rNW =
(
c −a b

)T
, rNE =

(
−c a b

)T
rSE =

(
c a −b

)T
, rSW =

(
−c −a −b

)T
.

Then, the North West Thruster implies this change in angular momentum:

P(rG→NW × nNW ) = P

 c
−a
b

× 1√
2

 0
1
−1

 (26)

=
1√
2
P

a− bc
c

 (27)

=
1√
2

−c sin(sb) + (a− b) cos(sb)
c cos(sb) + (a− b) sin(sb)

c

 (28)

=
1√
2

√c2 + (b− a)2 cos(sb + η)√
c2 + (b− a)2 sin(sb + η)

c

 (29)

=
1√
2

(√
c2 + (b− a)2 exp(jsb) exp(jη)

c

)
, (30)

where tan η = c
a−b . Then, the North East Thruster implies this change in

angular momentum:

P(rG→N × nNE) = P

−ca
b

× 1√
2

 0
−1
−1

 (31)

=
1√
2
P

−a+ b
−c
c

 (32)

=
1√
2

 c sin(sb)− (a− b) cos(sb)
−c cos(sb)− (a− b) sin(sb)

c

 (33)

=
1√
2

−√c2 + (b− a)2 cos(sb + η)

−
√
c2 + (b− a)2 sin(sb + η)

c

 (34)

=
1√
2

(
−
√
c2 + (b− a)2 exp(jsb) exp(jη)

c

)
. (35)
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Then, the South East Thruster implies this change in angular momentum:

P(rG→SE × nSE) = P

 c
a
−b

× 1√
2

 0
−1
1

 (36)

=
1√
2
P

a− b−c
−c

 (37)

=
1√
2

 c sin(sb) + (a− b) cos(sb)
−c cos(sb) + (a− b) sin(sb)

−c

 (38)

=
1√
2

√c2 + (b− a)2 cos(sb − η)√
c2 + (b− a)2 sin(sb − η)

−c

 (39)

=
1√
2

(√
c2 + (b− a)2 exp(jsb) exp(−jη)

−c

)
. (40)

Then, the South West Thruster implies this change in angular momentum:

P(rG→SW × nSW ) = P

−c−a
−b

× 1√
2

0
1
1

 (41)

=
1√
2
P

b− ac
−c

 (42)

=
1√
2

−c sin(sb)− (a− b) cos(sb)
+c cos(sb)− (a− b) sin(sb)

−c

 (43)

=
1√
2

−√c2 + (b− a)2 cos(sb − η)
−
√
c2 + (b− a)2 sin(sb − η)

−c

 (44)

=
1√
2

(
−
√
c2 + (b− a)2 exp(jsb) exp(−jη)

−c

)
. (45)

Putting all things together, we have this change in the angular momentum:

∆hin =
m
√
c2 + (b− a)2√

2

[
exp(jsb) exp(jη)TNW (46)

− exp(jsb) exp(jη)TNE (47)

+ exp(jsb) exp(−jη)TSE (48)

− exp(jsb) exp(−jη)TSW

]
(49)

(50)
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∆hout =
mc√
2
[TNW + TNE − TSE − TSW ] (51)

B.1.3 Expression of all the relation

Let’s write, and pose R1 = m√
2

√
c2 + (b− a)2. Then, we have:

 ∆i
∆e
∆hin

 =


j

mV
√
2

j

mV
√
2

− j

mV
√
2

− j

mV
√
2

2
mV

√
2

− 2
mV

√
2

− 2
mV

√
2

2
mV

√
2

R1 exp(jη) −R1 exp(jη) R1 exp(−jη) −R1 exp(−jη)


(52)

×


T1 exp(−js1)
T2 exp(−js2)
T3 exp(−js3)
T4 exp(−js4)

 (53)

(
∆D
∆hout

)
=

(
−3

mV
√
2

3
mV

√
2

3
mV

√
2

−3
mV

√
2

mc√
2

mc√
2

−mc√
2

−mc√
2

)
T1
T2
T3
T4

 (54)

B.1.4 Expressing thrust impulse in function of Change in Orbital
Element.

For computation purpose, let define the following constant:

α =
j

V
√
2

β =
2

V
√
2

(55)

δ = R1 exp(jη) γ =
3

V
√
2

(56)

ϵ =
mc√
2
. (57)

Then we obtain the following matrix: ∆i
∆e
∆hin

 =

α α −α −α
β −β −β β
δ −δ δ̄ −δ̄

 T ′ (58)

(
∆D
∆hout

)
=

(
−γ γ γ −γ
ϵ ϵ −ϵ −ϵ

)
T . (59)

Here δ̄ denote the complex conjugation of δ. It is to be noted that −α = ᾱ. We
will, do the Gauss’ elimination for finding easier relation to manipulate.
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1 1 −1 −1 1/α 0 0 ·1/α
1 −1 −1 1 0 1/β 0 ·1/β
δ −δ δ̄ −δ̄ 0 0 1

 (60)

1 1 −1 −1 1/α 0 0
0 −2 0 2 −1/α 1/β 0 L2 ← L2 − L1

0 −2δ δ̄ + δ −δ̄ + δ −δ/α 0 1 L3 ← L3 − δL1

 (61)

1 0 −1 0 1
2α

1
2β 0 L1 ← L1 + 1/2L2

0 −1 0 1 − 1
2α

1
2β 0 L2 ← 1/2L2

0 0 δ̄ + δ −δ̄ − δ 0 − δ
β 1 L3 ← L3 − δL2.

 (62)

And for the out of plane component, we have that:

(
−1 1 1 −1 1/γ 0 ·1/γ
1 1 −1 −1 0 1/ϵ ·1/ϵ

)
(63)(

−1 1 1 −1 1/γ 0
0 2 0 −2 1/γ 1/ϵ L2 ← L2 + L1

)
(64)(

−1 0 1 0 1/(2γ) −1/(2ϵ) L1 ← L1 − L2/2
0 1 0 −1 1/(2γ) 1/(2ϵ) L2 ← L2/2.

)
(65)

Thus, we have the following relation:

T ′
NW − T ′

SE =
∆i

2α
+

∆e

2β
(66)

T ′
NE − T ′

SW =
∆e

2β
− ∆i

2α
(67)

T ′
SE − T ′

SW =
−δ/β∆e+∆hin

δ̄ + δ
(68)

−TNW + TSE =
∆D

2γ
− ∆hout

2ϵ
(69)

TNE − TSW =
∆D

2γ
+

∆hout
2ϵ

, (70)

where T ′
i = Ti exp(jsi). This T ′

i is an indication of when the corresponding
thruster will burn via its argument, and for how long via its module. So one
can fully describe a manoeuvre given the 4 T ′

i . Now, one need to resolve this
system of equations to find the thrust impulses.

B.2 Hyperbola method

From the equations above one could try to solve than by hand, but there is a
geometrical interpretation that it is interesting. The set of equation gives us two
similar set up. One can represent the equation 69 and 66 as Figure 9 shows. The
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same representation could be achieved by the pair of equation 70 and 67. The
figure is a representation of the given constrain and what a possible solutions
could look like.

TSE

TSE

T ′
NW − T ′

SE

0

T ′
SE

T ′
NW

Figure 9: The dashed line represents only distance constraint, and the plain line
represent constraint in both orientation and distance.

To solve the equations, one is interested of finding the value of each T ′
i , but

the figure 9 tells us that it is equivalent to knowing T ′
i are, but not knowing

where lies the origin. The equation satisfied by the origin is

||z − T ′
SE | − |z − T ′

NW || = |
∆D

2γ
− ∆hout

2ϵ
|. (71)

The meaning of this equation is searching all the possible place where the origin
can lie (assuming we know where T ′

SE and T ′
NW lie). This equation is in fact a

complex formulation of a hyperbola equation, thus there is an infinite amount
of point satisfying this condition. So for solving the problem we will need the
other equations.

One can do the same thing for the other pair of impulses and this lead to a
new condition where 0 must be also solution of the equation:

||z − T ′
SW | − |z − T ′

NE || = |
∆D

2γ
+

∆hout
2ϵ
|, (72)

which is also a complex hyperbola.
To be able to solve the two equations above, one need to do a variable

substitution in equation 71 and 72 using the last equation 68 of the system
that we haven’t used so far. We need to do this, since the thrust impulses are
unknown, but we know the pair wise difference. Let’s make z = ẑ + TSW , and
we obtain the following system:
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{
||ẑ − (T ′

SE − T ′
SW )| − |ẑ − (T ′

NW − TSE + TSE − T ′
SW )|| = ∆hout

2ϵ − ∆D
2γ

||ẑ| − |ẑ − (T ′
NE − T ′

SW )|| = ∆D
2γ + ∆hout

2ϵ .

(73)
Now, we know all the constant of the two hyperbolas. If we do the substi-

tution with the desired orbital change, we obtain the following system:

{
||ẑ − ( δ/β∆e+∆hin

δ̄+δ
)| − |ẑ − (∆i

2α + ∆e
2β + δ/β∆e+∆hin

δ̄+δ
)|| = ∆hout

2ϵ − ∆D
2γ

||ẑ| − |ẑ − (∆e
2β −

∆i
2α )|| =

∆D
2γ + ∆hout

2ϵ .
(74)

The method to find the intersection of two hyperbolas is described in [6].
This method give between 0 and 4 solutions for the system. These possibles
solutions correspond to possible solution for −TSW due to the substitution, thus
leading with up to 4 quadruplet of solutions to the solution. The four possible
solutions are to the intersection of the different branches of the hyperbola. So
one must select the solution, if there exist one, of the two branches that we
care about, these two branches are determined by the sign of ∆D

2γ + ∆hout

2ϵ and
∆hout

2ϵ − ∆D
2γ . If there is multiple solution satisfying the above condition, one

can freely pick between them. A selection criteria will be the one that lead to
the minimum fuel consumption.

C Solving for every design

We have seen before in the specific example that we can solve analytically the
inversion problem: meaning, for a given change in orbital element, we can com-
pute a set of thrust that will lead to a manoeuvre that will fulfil those orbital
changes. However, in the general situation one can not apply the same reason-
ing, mainly because the previous example was highly symmetric which lead to
nice cancellation. This section is about describing a method to find a manoeuvre
that could be done for a wider range of design. It is to be noted that one can
still use the hyperbola method for every design, but the obtain manoeuvre won’t
yield the same results, the difference can be accounted for a new perturbation
on the Satellite.
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C.1 General Equations

The start of the reasoning is similar than in the previous case, the only difference
start after the Gauss elimination set we end up in a system of this form:

T1 − α′T4 = α (75)

T2 − γ′T4 = γ (76)

T3 − β′T4 = β (77)

|T1| − |T3| = φ (78)

|T2| − |T4| = ψ. (79)

(80)

If one doesn’t arrive at this general system of equations when using 4 thrusters,
it means that the design of the Satellite is not good. The rank of the matrix
should be large enough to be able to control all the variable. In this case, the
rank of the in plane matrix should be 3, and for the out of plane matrix it
should be 2. Otherwise, it would mean that the thruster configuration is not
able to change one state space variable and thus fail to control the spacecraft
correctly during the Station Keeping phase. However, here we only have the
general form of a rank 3 matrices. The out of plane matrix assume at least one
axis of symmetry. One could remove this hypothesis, by considering a general
form for both matrixes, but it won’t be dealt here for simplicity. One could
derive a solution following the same step as would be presented below.

Thus, one can reduce the problem to two equations, by simple substitution:

|α+ α′T4| − |β + β′T4| = φ (81)

|γ + γ′T4| − |T4| = ψ. (82)

The shape of the equations looks the same as the above example, the loss of
symmetry is seen with the prime coefficients, which would lead to no easy can-
cellation to obtain a hyperbola equation.

We will focus on the equation 81, since we can retrieve easily the second one
from the first.
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We can rewrite the equation in that manner

φ = |α+ α′T4| − |β + β′T4| (83)√
(α+ α′T4)(ᾱ+ ᾱ′T̄4) = φ+

√
(β + β′T4)(β̄ + β̄′T̄4) (84)

(α+ α′T4)(ᾱ+ ᾱ′T̄4) = φ2 + 2φ
√

(β + β′T4)(β̄ + β̄′T̄4) (85)

+ (β + β′T4)(β̄ + β̄′T̄4)(
(α+ α′T4)(ᾱ+ ᾱ′T̄4)− φ2 − (β + β′T4)(β̄ + β̄′T̄4)

)2
= (86)

4φ2(β + β′T4)(β̄ + β̄′T̄4)

4φ2(|β|2 + |β′T4|2 + 2Re(β̄β′T4)) = ((|α|2 + |α′T4|2 + 2Re(ᾱα′T4))− φ2

− (|β|2 + |β′T4|2 + 2Re(β̄β′T4)))
2

(87)

4φ2(|β|2 + |β′T4|2 + 2Re(β̄β′T4)) = [|α|2 − φ2 − |β|2 + (|α′|2 − |β′|2)|T4|2

+ 2Re((ᾱα′ − β̄β′)T4)]
2.

(88)

Let pose for computation purposes:

ζ = |α|2 − φ2 − |β|2

ξ = |α′|2 − |β′|2

ν = (ᾱα′ − β̄β′).

So, after the substitution, we end up with:[
ζ + ξ|T4|2 + 2Re(νT4)

]2
= 4φ2(|β|2 + |β′T4|2 + 2Re(β̄β′T4)) (89)

4φ2(|β|2 + |β′T4|2 + 2Re(β̄β′T4)) = ζ2 + ξ2|T4|4 + 4Re(νT4)
2 + 2ζξ|T4|2

+ 4ζRe(νT4) + 4ξRe(νT4)T4
(90)

0 =ζ2 − 4φ2|β|2 + (−4φ2|β′|2 + 2ζξ)|T4|2 + ξ2|T4|4 + 4Re(νT4)
2

+ 4ζRe(νT4) + 4ξRe(νT4)|T4|2 − 8φ2Re(β̄β′T4)
(91)

Writing T4 = X + jY , we can obtain the following real polynomial

0 =ζ2 − 4φ2|β|2 + (−4φ2|β′|2 + 2ζξ)(X2 + Y 2) + ξ2(X2 + Y 2)2

+ 4(Re(ν)X − Im(ν)Y )2 + 4ζ(Re(ν)X − Im(ν)Y )

+ 4ξ(Re(ν)X − Im(ν)Y )(X2 + Y 2)− 8φ2Re(β̄β′)X + 8φ2Im(β̄β′)Y

(92)

0 =ζ2 − 4φ2|β|2 + (4ζRe(ν)− 8φ2Re(β̄β′))X + (−4ζIm(ν) + 8φ2Im(β̄β′))Y

+ (−4φ2|β′|2 + 2ζξ)(X2 + Y 2) + 4(Re(ν)X − Im(ν)Y )2

+ 4ξ(Re(ν)X − Im(ν)Y )(X2 + Y 2) + ξ2(X2 + Y 2)2

(93)
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Thus, if we replace ζ, ξ, ν by their original value, we end up with:

0 =(|α|2 − φ2 − |β|2)2 − 4φ2|β|2

+ (4(|α|2 − φ2 − |β|2)Re(ᾱα′ − β̄β′)− 8φ2Re(β̄β′))X

+ (−4(|α|2 − φ2 − |β|2)Im(ᾱα′ − β̄β′) + 8φ2Im(β̄β′))Y

+ (−4φ2|β′|2 + 2(|α|2 − φ2 − |β|2)(|α′|2 − |β′|2))(X2 + Y 2)

+ 4(Re(ᾱα′ − β̄β′)X − Im(ᾱα′ − β̄β′)Y )2

+ 4(|α′|2 − |β′|2)(Re(ᾱα′ − β̄β′)X − Im(ᾱα′ − β̄β′)Y )(X2 + Y 2)

+ (|α′|2 − |β′|2)2(X2 + Y 2)2.

(94)

By symmetry, we can have the same other polynomial written as

0 =(|γ|2 − ψ2)2

+ (4(|γ|2 − ψ2)Re(γ̄γ′))X

+ (−4(|γ|2 − ψ2)Im(γ̄γ′))Y

+ (−4ψ2 + 2(|γ|2 − ψ2)(|γ′|2 − 1))(X2 + Y 2)

+ 4(Re(γ̄γ′)X − Im(γ̄γ′)Y )2

+ 4(|γ′|2 − 1)(Re(γ̄γ′)X − Im(γ̄γ′)Y )(X2 + Y 2)

+ (|γ′|2 − 1)2(X2 + Y 2)2.

(95)

We will refer to this polynomial as P1 and P2 as we go on. Now, we want
to find the all common root of those two polynomials, or in other word the
intersection of the loci of these two polynomials. We can also note that we
obtain the same equations as the previous section, if we set α′ = β′ = 1, in this
case we can easily see for example that the leading term will vanish.

C.2 Gröbner Basis

In this part, I will go a little into the detail on how one can solve an intersection of
polynomials. This part will use advance mathematics in the Algebraic Geometry
filed, and I will not explain all the theory behind it, if one want to learn the
topic you can read the following books [3] [4] [1]. I will explain how it is working
and the general idea of it.

What we want is to find the intersection of the 0 loci of polynomials, one
can reformulate this into finding the variety generated by the two polynomials
P1 and P2, one denote it V (P1, P2). To find this variety, it is equivalent to find
the variety from the ideal generate by the two polynomials. And by proposition
9 in section 2.5 of [3], if we have a basis of an ideal, say (G0, · · ·Gk), we can
compute the variety V (P1, P2) by computing the variety generated by the basis
V (G0, · · · , Gk) since, the two varieties are the same. The hope is that solving
the problem with the polynomials’ basis would be easier than solving it directly
with the original polynomials.

25



The basis that we will consider is the Gröbner basis. It can be obtained of
any ideal in a polynomial ring, this is provided by the Hilbert basis Theorem [3].
And this basis will provide us an easier way to solve the system of equations.
One can obtain the decomposition of an ideal by applying the Buchberger’s
Algorithm [2].

I will consider an example of using the Gröbner basis, to better show how
this can be employed for our cases.

Example: Consider the ring k[x, y, z] with lexicographic ordering and let I =
(f1, f2, f3) = (x2 + y + z − 1, x+ y2 + z − 1, x+ y + z2 − 1) be an ideal. When
applying the Buchberger Algorithm, one find the following basis:

g1 = x+ y + z2 − 1 (96)

g2 = y2 − y − z2 + z (97)

g3 = 2yz2 + z4 − z2 (98)

g4 = z6 − 4z4 + 4z3 − z2. (99)

One can see that the last polynomial g4 contain only one variable, so we
can solve it and obtain all possible value for z. Then, we can replace z by the
root found and solve g2 and g3 to find the possible value of y. Finally, we can
solve g1 to determine the value of x. At each step, we have solved a polynomial
of only variable, which is simpler than solving a polynomial of more than two
variables.

On this example, we can see that it is easier to solve the system of equation
given by the gi than the fi because one could start by solving a one variable
polynomial, then use the roots found to obtain other one variable polynomials,
and then repeat the procedure. This behaviour can be done in great generality
thanks to the Elimination theory, and how the Gröbner basis is computed. In
short, this theory proves that the obtain basis will have the same pattern in
every case to allow us to save the original system of equation. This can be seen
as a generalization of the Gauss elimination.

Thanks to that technics we can find the solution of the system of equations
determined by P1 and P2 and thus allowing us to compute the correct manoeuvre
in every well-designed spacecraft. This as been implemented with the symbolic
maths toolbox of Matlab and use with great success.
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