
 

Non-Destructive Qualification Testing for Aerospace 
Structures Using a Predictive Vibration Method 

 

Abstract—Vibrational analysis is an important method for 
evaluating the structural performance of 3D-printed metal 
components in aerospace applications. Aerospace-grade 
materials are selected for their ability to resist extreme 
conditions, and their vibrational behavior must be carefully 
assessed to ensure reliability in challenging environments. This 
study examines the vibrational behavior of beams and complex 
geometries made from Inconel, a Nickel-Chromium Alloy 
known for its strength and heat resistance. In addition, other 
materials such as Titanium Alloys, Aluminum, and Stainless 
steel are considered due to their wide application in satellite 
construction. By introducing the Relative Frequency Shift 
(RFS) method, which employs vibrational and modal analysis to 
detect internal defects in 3D-printed metal components, a vast 
array of predicted responses can be frontloaded into a 
qualification procedure. This research incorporates machine 
learning (ML) to improve the organization and efficiency of 
prediction models and automate defect identification. ML 
algorithms analyze large datasets to uncover patterns related to 
voids, cracks, or other irregularities that can occur during the 
3D printing process. With ML integration, the study speeds up 
vibrational analysis, enhances accuracy, and reduces the 
reliance on physical testing, allowing for faster transitions from 
design to production. Using Ansys simulation and the finite 
element method (FEM), modal and harmonic analyses are 
conducted, incorporating Timoshenko beam theory to account 
for shear deformation and rotary inertia. The Timoshenko 
theory is integrated into an algorithm that helps detect potential 
defects, such as voids or deformations, which may arise during 
the 3D printing process. Timoshenko beam theory offers a 
significant advantage over different models, which are crucial 
for accurately analyzing components with non-uniform 
geometries. This level of detail ensures that even indistinct 
internal deformations are captured, providing deeper insights 
into the material behavior under dynamic conditions. The 
integration of Timoshenko theory into FEM simulations allows 
for more realistic and practical results, bridging the gap 
between theoretical analysis and real-world applications. Ansys, 
as the chosen simulation platform, excels in handling complex 
geometries and multi-material assemblies, enabling the study to 
precisely replicate the operational environment of aerospace 
components. By leveraging Ansys’ advanced capabilities, the 
study ensures that all potential scenarios, including thermal 
expansion and vibrational loads, are accurately modeled, 
leading to more reliable predictions and safer designs. 

Current testing methods for aerospace components often 
involve extensive physical experiments, including vibration 
tables, thermal cycling chambers, and destructive testing to 

evaluate failure points. While these methods provide valuable 
insights, they are time-consuming, costly, and limited in their 
ability to explore a wide range of scenarios. This study integrates 
advanced simulations and predictive algorithms to examine 3D-
printed parts through vibrational analysis, FEM simulation, 
and theoretical modeling. It offers a complementary approach 
that reduces dependency on exhaustive physical tests while 
maintaining accuracy and reliability to understanding material 
behavior. 

Predictive methods powered by ML detect potential flaws 
early, cutting down on delays and preventing material waste as 
well as preventing possible failure. By identifying natural 
frequencies and mode shapes, engineers can confirm that 
components meet performance criteria under operational 
conditions. The added accuracy from ML-driven insights 
strengthens these evaluations, making it easier to identify 
structural weaknesses before they affect performance. This tool 
not only enhances technical reliability but also supports supply 
chain efficiency by reducing production errors, minimizing 
waste, and improving part quality. These findings help 
aerospace companies streamline their supply chains, lower 
manufacturing costs, and ensure more reliable, high-
performing components for satellite structures, meeting the 
demanding conditions of space. Collaboration between 
suppliers and manufacturers improves significantly when 
shared data and tools are utilized. This approach allows for a 
supply chain that adapts easily to changes and responds quickly 
to demands. By addressing current challenges in aerospace 
production, it also establishes a foundation for future 
innovation, helping the industry stay ahead and meet the 
requirements of space exploration. 

Keywords—Vibration, Qualification Testing, Non-destructive 
Testing, Additive Manufacturing, Manufacturing Defects, Modal 
Analysis. 

 

I. INTRODUCTION  
The increasing reliance on additive manufacturing (AM) 

in aerospace engineering has introduced both new capabilities 
and new challenges, particularly in the qualification as the 
industry adopts complex 3D-printed geometries and high-
performance alloys. Metal components fabricated using AM, 
such as selective laser melting (SLM) and electron beam 
melting (EBM), often feature complex geometries, internal 
residual stresses, and variations in microstructure [1]. These 
characteristics can have a significant impact on mechanical 
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behavior and structural integrity under dynamic or loading 
conditions. Reliable non-destructive qualification methods are 
therefore needed to verify that components meet aerospace 
performance standards without relying on time-consuming or 
destructive testing procedures [2]. 

 AM enables the production of aerospace components with 
complex geometries that difficult to achieve through 
conventional methods. Materials such as Inconel, Titanium 
Alloys, Aluminum, and Stainless Steel are commonly used for 
their strength-to-weight efficiency and ability to perform 
under extreme thermal and mechanical environments [3]. 
These material characteristics are important in applications 
such as satellite structures, and other high-performance 
aerospace assemblies. However, the layer-by-layer nature of 
3D printing fabrication can introduce sub-surface defects such 
as lack of fusion, internal porosity, and residual thermal stress 
that are not easily detected through visual or surface 
inspection [4]. Ensuring component quality requires methods 
capable of detecting internal defects without altering or 
damaging the part. 

 Aerospace manufacturing commonly uses several non-
destructive testing (NDT) methods, including ultrasonic 
inspection, X-ray radiography, thermographic imaging, eddy 
current probing, and magnetic particle testing. While these 
techniques are well established in the industry, each presents 
specific limitations depending on the material, geometry and 
type of defect being tested. For example, Radiographic 
inspection requires safety precautions, is costly to operate, and 
may struggle with resolution in high-density materials [5]. 
Surface-sensitive methods like eddy current and magnetic 
particle inspection are not effective for internal flaws and 
require materials with specific electromagnetic properties [6]. 
Beyond technical limitations, these techniques often require 
specialized tools, trained operators, and controlled testing 
environments. That makes these requirements expensive and 
difficult to implement in production lines. The need for 
frequent calibration, inspection time, and post-processing 
further contributes to increase overall production costs and 
delay delivery schedules, particularly in high-mix, low-
volume production common to space-grade components [7]. 

 These challenges have motivated the development of 
alternative approaches that preserve the benefits non-
destructive testing, cost-efficient, scalability, and adaptable to 
the unique characteristics of AM [8]. This paper investigates 
vibrational analysis as a qualification method for 3D-printed 
aerospace components. By analyzing shifts in dynamic 
response and characteristics, such as changes in natural 
frequencies and mode shapes, internal defects can be 
identified through their effect on stiffness and mass 
distribution. Often caused by internal defects such as voids, 
these variations of this nature, offer a reliable basis for 
evaluating structural integrity [9]. Vibrational analysis is a 
widely applied method for examining how structures respond 
to dynamic loading. It focuses on identifying natural 
frequencies and mode shapes, which are directly influenced 
by the distribution of mass and stiffness within a component 
[10]. Any disturbance to this balance, such as internal defects, 
can lead to measurable changes in the vibrational response, 
making it a useful tool for detecting structural inconsistencies 
without direct access to the interior [11]. This approach is 
based on Relative Frequency Shift (RFS), which measures 
percentage changes in natural frequencies relative to a 
component without defects. RFS allows internal voids to be 

detected by tracking changes in the natural frequencies of the 
beam. The presence of a void affects how vibrations travel 
through the structure, resulting in small but measurable shifts 
in frequency [12]. Combined with Ansys simulation and 
machine learning predictive modeling, this approach helps 
improve quality assurance without adding significant cost or 
time to the production process. 

 To accurately capture the dynamic behavior of 3D-printed 
aerospace components, this study utilizes Timoshenko beam 
theory. This theory includes shear deformation and rotary 
inertia, which are important for analyzing both basic beams 
and thin-walled tubes, where dynamic behavior can be 
affected by internal defects [13]. Thin-walled tubes have 
different cross-sectional properties from solid rectangular 
beams, these properties significantly affect their moment of 
inertia. In tubular sections, both the outer and inner radii 
influence the moment of inertia, making them more sensitive 
to changes in wall thickness and internal defects [14]. 
Accurately modeling these properties is important for 
predicting vibrational behavior and identifying changes that 
may indicate structural flaws and defects. Ansys is a 
commonly used simulation platform in aerospace design and 
analysis, known for its ability to handle complex geometries 
and boundary conditions. It includes Timoshenko beam theory 
in its standard formulation, making it suitable for evaluating 
structural response under dynamic loading [15]. The finite 
element method (FEM) enables precise modeling of stress 
distribution, deformation, and vibrational modes, providing 
insight into how internal voids or material inconsistencies can 
affect the way 3D-printed components respond to dynamic 
loads [16]. The simulation results provide a baseline for 
understanding how defect location and geometry influence 
vibrational behavior of the structure. By monitoring variations 
in its natural frequencies. RFS occur when there are changes 
in stiffness or mass distribution, which can result from internal 
flaws such as voids or cracks [17].  

 To validate the simulation work, a mathematical model 
based on Timoshenko beam theory was developed and used to 
generate training data for a machine learning algorithm. This 
model included various defect scenarios by adjusting the 
location of voids in both beam and tube configurations. First 
introduced by Stephen Timoshenko in the early 1920s, the 
theory addressed limitations in classical beam models by 
incorporating both transverse shear deformation and rotary 
inertia [18]. As a result, it offers improved accuracy in 
vibration analysis, where even small modeling differences can 
significantly influence predicted natural frequencies [19]. The 
output data allowed the algorithm to learn how these internal 
changes affect stiffness, mass distribution, and resulting 
frequency shifts. Using machine learning makes it possible to 
relate these shifts to specific defect conditions, allowing for 
faster detection and improved consistency across different 
structural configurations [20]. The RFS values obtained from 
both the theoretical and simulated models were compared and 
assembled into a database enabling the correlation of specific 
frequency shifts with corresponding defect locations. This 
method enables defect detection across different geometries 
by using machine learning trained on a structured collection 
of simulation and theoretical data. 

 Recent research has shown that machine learning (ML) 
can enhance vibration analysis by enabling fast and data-
driven prediction of beam behavior. Regression-based 
machine learning models have been used to predict the natural 



frequencies of various beam types, demonstrating high 
accuracy and reduced computational demands [21]. Similarly, 
machine learning techniques have been applied to predict the 
deflection and shape of 2D cantilever beams, validating the 
capability of these models for structural behavior prediction 
[22]. 

In the context of damage detection, several studies have 
implemented machine learning techniques to identify defects 
such as cracks in cantilever beams, which are often 
challenging to detect using conventional analytical or visual 
inspection methods. A correlation-based ML approach has 
been used for crack detection, highlighting its potential in 
structural health monitoring [23]. Another investigation 
applied both regression and machine learning models to 
identify damage in cantilever beams, further demonstrating 
the reliability of data-driven methods in structural diagnostics 
[24]. Additionally, vibration-based features such as frequency 
response functions (FRFs) and time-frequency signatures 
have been integrated with machine learning classifiers for 
more advanced damage detection frameworks. A hybrid 
method combining FRFs with machine learning has been 
proposed to detect structural damage [25]. On the other hand, 
deep learning approaches using time-frequency extended 
signatures have also been applied for beam condition 
monitoring, demonstrating the effectiveness of deep models in 
identifying subtle dynamic anomalies [26]. 

 Previous studies provide a strong foundation for the use of 
machine learning in structural dynamics. They also motivate 
the development of a hybrid approach that combines 
Timoshenko beam theory with Artificial Neural Networks 
(ANNs) to predict the vibrational behavior of beams and 
complex geometries fabricated from aerospace-grade 
materials. ANNs are effective for this purpose due to their 
ability to model complex, nonlinear relationships between 
structural properties and vibrational response [27]. 

 By integrating Timoshenko theory in both simulation and 
algorithmic modeling, this study establishes a consistent and 
reliable approach for non-destructive qualification method. 
The combined use of finite element analysis and machine 
learning enables early detection of internal defects in 3D-
printed aerospace components, whether simple or 
geometrically complex. 

 Machine learning, particularly using artificial neural 
networks, has shown increasing promise in vibration-based 
structural assessment. This study builds on that work by 
applying similar techniques to aerospace materials, where 
accurate vibration response is essential for safety and 
performance. Through automated detection of internal 
defects, such as voids, or irregularities introduced during 
additive manufacturing. This approach provides a practical 
and scalable tool for structural evaluation in aerospace 
applications. 

 

II. MATERIALS AND METHODS 

A. Materials and Geometries 
This study investigates two structural configurations:  
a solid rectangular beam Fig. 1 and a thin-walled cylindrical 
tube Fig. 2.  

 
Fig. 1:    Fixed-Free beam with  an internal defect.  

 

 
Fig 2:    Fixed-Fixed thin-wall tube with an internal defect. 

 

 These geometries were selected to represent both simple 
and more complex structural forms that are common in 
aerospace components. 

 The materials used in this study consist of commonly used 
aerospace-grade alloys, which were chosen based on their 
performance under extreme mechanical and thermal 
conditions. The following materials were investigated: 

 

Table 1: Materials Properties 

Material Density E-Modulus 

Inconel 718 8070	kg/m! 220	𝐺𝑃𝑎 

Stainless Steel 316 7910	kg/m! 180	𝐺𝑃𝑎 

Titanium Ti6AII4V 4360	𝑘g/m! 110	𝐺𝑃𝑎 

Aluminum 2590	kg/m! 70	𝐺𝑃𝑎 

 

 Inconel 718 was selected as the base material for both 
models due to its common use in aerospace applications. 
Known for its high strength, corrosion resistance, and stability 
at elevated temperatures, Inconel provides a suitable 
representation of 3D-printed, aerospace certified components. 

 Internal defects were introduced as a square-shaped void 
located at different locations along the length and width of the 
beam. The voids were modeled as a square cross-sectional, 
reducing stiffness and mass. For the tube geometry, the void 
was also modeled with a square cross-sectional located at 
different locations along the length. The void was oriented to 
follow the curvature of the cylindrical wall, mimicking defects 
that may results from incomplete fusion along the printing 
process.  

 A total of 21 cases were generated for each geometry and 
material, including range of defect locations along both 
structures. The void locations for the beam and tube 
configurations are listed in Table 2 and Table 3, respectively. 
These tables define the locations where the square-shaped 
void was introduced for each case.  

𝐿
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Table 2:  Beam Void Locations 

Parameter Value (m) 

𝑥" 0.074 

𝑥# 0.130 

𝑥! 0.220 

𝑧$ 0 

𝑧", 𝑧"%  0.00127 

𝑧#, 𝑧#%  0.00508 

𝑧!, 𝑧!%  0.00889 

Where 𝑥! is the location of the void along the length of the 
beam 𝐿 from the fixed end. The 𝑧" is the location of the void 
in the middle-width of the beam, and 𝑧!, 𝑧!#  is the location of 
the void from the edge of the beam along the width 𝑤.  

Table 3: Tube Void Locations 

Parameter Value (m) 

𝑥" 0.015 

𝑥# 0.06 

𝑥! 0.105 

𝑥& 0.15 

𝑥' 0.195 

𝑥( 0.24 

𝑥) 0.285 

 
Where 𝑥! is the location of the void along the length of the 

tube 𝐿 from the left fixed end. 

 

B. Methods 
Modal and harmonic analyses were conducted using 

Ansys Mechanical, with both geometries. The beam was 
modeled with a fixed-free boundary conditions, which was 
used to represent a 3D-printed testing coupon and to validate 
the method using a simple structural configuration. The tube 
geometry was analyzed under fixed-fixed boundary 
conditions to represent a more complex geometry relevant to 
aerospace components. As Ansys applies Timoshenko beam 
theory, which accounts for both shear deformation and rotary 
inertia. The software was used to simulate a range of defect 
scenarios across different geometries, allowing for systematic 
evaluation of how void location influence vibrational 
behavior. For each case, natural frequencies and mode shapes 
were recorded for both the intact and defected models. The 
introduction of the void affected the local stiffness and mass, 
which caused shifts in the vibrational response. These shifts 
were measured using the RFS, defined as: 

 RFS =	 $!%$"
$!

 (1) 

Where 𝑓" is the natural frequency of the intact model, and 𝑓& 
is the natural frequency of the model with void. 

 By comparing frequency results from defective and non-
defective models, the Relative Frequency Shift (RFS) was 
computed to measure the impact of each defect configuration. 

The RFS value was used as the main indicator for detecting 
the defect location. 

A theoretical model based on Timoshenko beam theory 
was developed and applied to the beam configurations to 
validate the simulation results from Ansys. The model used 
the same material properties, geometry, and boundary 
conditions as those defined in the finite element setup. Square-
shaped voids were treated as localized reductions in cross-
sectional stiffness and mass, enabling the computation of 
natural frequencies for each defect scenario. 

 This model focuses exclusively on transverse vibration 
modes, which are the most sensitive to internal stiffness and 
mass changes. The theoretical basis is established using the 
governing differential equations of Timoshenko beam theory 
are: 
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In these equations, 𝜔(𝑥, 𝑡)  represents the transverse 
displacement of the beam, and 𝜙(𝑥, 𝑡) denotes the rotation of 
the cross-section. The parameters include 𝐸	 for Young’s 
modulus, 𝐺  for the shear modulus, 𝜌  for material 
density, 𝐴  for the cross-sectional area, 	𝐼  for the second 
moment of area, and K as the shear correction factor. 

 
The shear modulus 𝐺 , which governs the material’s 

resistance to shear deformation, is related to Young’s modulus 
and Poisson’s ratio 𝜈 by the expression: 

 𝐺 = /
0(123)

 (4) 

This relationship is used to determine the shear stiffness 
term 𝐾𝐺𝐴, which is included in both the stiffness matrix and 
the governing equations. For a beam with a rectangular cross-
section, the second moment of area is calculated as: 

 𝐼 = 45$

10
 (5) 

where 𝑏 is the width and ℎ	is the height of the beam cross-
section. This geometric property directly affects the bending 
stiffness and the natural frequencies of the structure. When a 
square-shaped void is introduced, it reduces both the cross-
sectional area and the moment of inertia of the section.  In the 
case where the void is not centered on the neutral axis, its 
contribution to the moment of inertia is calculated using the 
parallel axis theorem: 

 𝐼678& =
9%

10
+ 𝐴𝑑0 (6) 

where	𝑎	is the length of the void, 𝐴 is its area, and 𝑑 is the 
distance from the void's center to the neutral axis. This value 
is subtracted from the original moment of inertia to account 
for the local reduction in stiffness. 



This theoretical model was implemented in MATLAB 
using a finite element approach. Natural frequencies were 
computed for both intact and defected beam configurations, 
and only transverse modes were recorded. These results were 
then compared with Ansys simulations to verify consistency 
between both methods. 

To support the machine learning structure and improve 
compatibility with data processing tools, the original 
MATLAB implementation was rewritten in Python. The same 
finite element formulation was maintained to ensure that the 
natural frequency results remained consistent with those 
previously obtained. Each case was defined by material 
properties, beam geometry, void location, and computed 
frequencies, and recorded in a structured database. 

Using Python allowed direct integration with data 
handling libraries and machine learning workflows. For each 
configuration, the RFS was calculated based on the difference 
between the frequencies of the intact and defected models. 
These values were stored alongside the corresponding input 
parameters, creating the dataset used to train and assess the 
machine learning model. This transition to Python also 
improved the efficiency of batch processing for multiple 
defect scenarios and simplified the overall workflow. 

Modal frequencies, mode shapes, and damping 
characteristic were extracted from the simulations. The dataset 
included geometric parameters (length, width, thickness), 
materials properties (Young’s modulus, density, Poisson’s 
ratio), and resulting vibrational responses. These were 
compiled into a structured database used for training the 
machine learning model. 

ANN model was developed to predict the vibrational 
characteristics of the structures based on their input 
parameters. ANN was selected for its ability to model 
complex nonlinear relationships between structural properties 
and vibrational behavior. 
 

III. RESULTS 
 

Natural frequencies describe how a structure responds 
when set into vibration and it depend on its shape, material, 
and how it's supported. If the structure has an internal change 
like a defect or variation in stiffness, its natural frequencies 
can shift. Four different AM materials were tested, Inconel, 
Stainless Steel, Aluminum, and Titanium. Understanding how 
the materials modal response varies between material 
properties is key to detecting a void defect. The void used in 
the analysis had a very small size relative to the beam, this led 
to the magnitude of the percentage of  frequency shift being 
relatively small.  

The third mode was selected for analysis because it 
provides a more detailed deformation pattern than the 
fundamental or second modes. While the first mode generally 
shows a single smooth curvature, the third mode introduces 
multiple peaks and inflection points along the beam. These 
variations in displacement make it more effective for 
evaluating how internal defects influence vibrational 
response. Defects located near antinodes, where displacement 
is greatest, tend to cause more noticeable shifts in natural 
frequency. This makes the third mode particularly suitable for 
studying the influence of void position on vibrational 
response.  

From Fig. 3 below, it can be observed that this natural 
frequency shift for three of the materials is maximal near the 
edges of the beam and drops as the void’s location nears the 
mid-width of the beam, where it reaches its minimum value. 
This behavior may be explained by the bending stresses being 
maximal towards the edges of the beam and drops to a 
minimum value towards its middle. 

 
Fig. 3:  3rd-mode frequency shift for all materials with a 
void at location (𝑧 = 0.074𝑚) along the beam length. 
 

 
Fig. 4:  3rd-mode frequency shift for all materials with a 
void at location (𝑧 = 0.13𝑚) along the beam length. 
 

 
Fig. 5:  3rd-mode frequency shift for all materials with a 
void at location (𝑧 = 0.22𝑚) along the beam length. 

Moreover, for Inconel and Stainless Steel beams, the 
percentage of the frequency shift is greater at third location 
than at the first location. Considering that the voids at the first 
location all lie on the first antinode of the third mode of 
vibration, where the displacement of the beam is close to its 
maximum value, this result was expected. However, the fact 
that the voids at the third location all lie on the third node of 
the third mode of vibration was unexpected. The presence of 
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a void at an antinode, where the beam reaches its highest 
displacement during vibration, would be expected to 
significantly alter the mass distribution and stiffness of the 
beam, resulting in a maximal frequency shift for all materials 
at that location. In contrast, a void located at the third node of 
vibration, where the beam experiences minimal vibration 
during its response, was expected to have a negligible impact 
on the natural frequencies of the beam, resulting to relatively 
small frequency shifts. However, this outcome was observed 
only in the Titanium beam, while other materials showed more 
noticeable deviations. 

The beam results provide a clear view of how frequency 
shifts vary across different materials. As shown in Fig. 6 
Inconel and Stainless Steel exhibits the highest percentage 
frequency shift near the edges of the beam. Across the rest of 
the beam’s width, Titanium shows the greatest frequency shift 
among the four materials tested. In Fig.  7, at the second 
location, the Aluminum beam shows the highest percentage 
frequency shift across the width of the beam. In Fig. 8, at the 
third location, both Inconel and Stainless Steel yield the 
largest shift in natural frequency. Given that all geometries 
and boundary conditions remained constant, with material 
properties as the only varying factor, the variation in which 
material yielded the maximum frequency shift is notable. One 
would expect a consistent trend in the material producing the 
highest shift across all void locations; however, the results 
indicate a more location-dependent response. A consistent 
trend in the material exhibiting the highest percentage 
frequency shift across all transverse void locations would 
typically be anticipated based on material stiffness and density 
characteristics.  

To further explore this behavior, the ratio of Young’s 
modulus to density was evaluated, as it is known to influence 
natural frequency. The goal was to determine whether this 
ratio could explain the observed differences in frequency 
shifts. However, no consistent relationship was found between 
the modulus-to-density ratio and the magnitude of the 
frequency shifts. Although the modulus-to-density ratio 
provides general insight into dynamic behavior, it did not 
explain why some materials exhibited larger shifts than others 
when all structural and loading variables were controlled. This 
suggests that the interaction between material properties and 
localized defects may involve more complex mechanisms. As 
the way internal stresses or energy distribution respond to 
discontinuities is not fully captured by the global stiffness-to-
mass ratio, it suggests that additional material-specific factors 
influence the vibrational response to localized defects, even 
under controlled structural and boundary conditions. 

Both the theoretical results from MATLAB and the 
simulation data from Ansys exhibit a symmetric pattern in the 
percentage frequency shift across the beam width for Inconel 
718 under the third vibrational mode, as shown in the figures 
corresponding to void locations at (𝑧 = 0.074𝑚) Fig. 6, (𝑧 =
0.13𝑚) Fig. 7, and (𝑧 = 0.22𝑚) Fig. 8. These represent void 
locations 1, 2, and 3, respectively, along the beam’s length. 

 
 
 

 
Fig. 6:  Absolute frequency shift percentage for the 3rd- 
mode at location (𝑧 = 0.074𝑚) along the beam length.  

 
Fig. 7:   Absolute frequency shift percentage for the 3rd-
mode at location (𝑧 = 0.13𝑚) along the beam length.  

 
Fig. 8:  Absolute frequency shift percentage for the 3rd-
mode at location (𝑧 = 0.22𝑚) along the beam length.  

In all three locations, the theoretical predictions from 
MATLAB tend to yield slightly higher frequency shifts 
compared to the Ansys Mechanical. At the second location 
Fig. 7, the theoretical results show a peak shift near the mid-
width of the beam, while the Ansys data reflect a more 
uniform distribution with minimal variation across the width. 

This difference can be attributed to the fundamental 
distinction in how each method approaches the problem. The 
MATLAB model is based on a direct mathematical 
implementation of Timoshenko beam theory. It solves the 
governing differential equations analytically and treats the 
void as a localized reduction in stiffness and mass, 
incorporated through changes in the moment of inertia and 
cross-sectional area. In contrast, Ansys relies on finite element 
analysis, where the geometry is discretized into individual 
elements and solved numerically using interpolation functions 
and matrix assembly. The way Ansys handles mesh density, 
shape functions, and numerical integration may smooth out 
localized effects, especially if the mesh is not highly refined 
around the void region. As a result, the simulation may 
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underpredict frequency shifts compared to the more idealized 
analytical model. 

To further illustrate the influence of the void defect 
placement, Fig. 9 presents a surface plot of the third-mode 
frequency shift distribution for Inconel 718, covering all 21 
void locations across the beam. The frequency response is 
shown along both the length and width, reflecting how 
changes in void location affect the natural frequency. As 
observed, the largest shifts occur near the free end and along 
the outer edges of the beam, where vibrational displacement 
is highest. This pattern highlights the sensitivity of the third 
mode to void location and supports the earlier finding that 
frequency response is strongly influenced by local 
deformation characteristics. 

 

 

 
Fig. 9:  3rd-mode frequency shift surface plot for Inconel 
beam. 
 

Ansys Mechanical was also used to calculate the modal 
response for the complex tube geometry. This followed the 
validation step in which  Ansys results for the beam were 
compared against theoretical predictions obtained from the 
MATLAB implementation of Timoshenko beam theory. The 
close agreement between the two confirmed the accuracy of 
the finite element approach used by Ansys Mechanical to 
solve for the structure’s modal response. This validation 
supports its use for analyzing more complex structural 
configurations, such as the tube. 

Considering a complex geometry, Fig. 10 illustrates the 
shift in the third mode natural frequency of an Inconel tube. 
The model demonstrated a significant frequency shift across 
all seven void locations, indicating a distinct response when a 
void is present. 

 
Fig. 10:    3rd-mode frequency shift for Inconel tube. 

Fig. 10 and Fig. 11 illustrate a symmetric response along 
the tube's length, which is consistent with the expected 
behavior of a fixed-fixed boundary condition. Fig. 11 displays 
the fourth vibrational mode, which is the inverse of the third 
mode in terms of displacement profile. This mode introduces 
an additional node along the length, resulting in alternating 
regions of maximum and minimum displacement. The 
symmetry observed in both plots is influenced by the even 
spacing of voids along the tube, which affects the local 
stiffness without disrupting the overall modal shape. These 
results indicate that the model effectively captures the 
dynamic characteristics of the structure. 

 

 
Fig. 11:    4th-mode frequency shift for Inconel tube. 

 

 
Fig. 12:    8th-mode frequency shift for Inconel tube. 

 
 

In the higher natural frequency modes, the tubular 
geometry exhibits a distinct shift in its natural frequencies. 
The fourth and eighth mode of vibration was selected to 
demonstrate this effect, as shown in Fig.10 and Fig. 11. Fig. 
12 shows the frequency shift for the eighth mode of the 
Inconel tube. This thin-walled geometry introduces added 
sensitivity to local stiffness changes, making it especially 
responsive to internal defects. The eighth mode includes more 
nodes and inflection points, producing a complex deformation 
pattern along the length of the tube. In higher modes like this, 
even small voids can influence the dynamic response, as the 
vibration shape interacts with localized mass and stiffness 
variations. In fixed-fixed structures, the symmetry of the 
boundary conditions helps maintain a balanced modal 
distribution, but the effect of defects remains visible. These 
shifts in frequency provide a practical means for identifying 
the presence of voids in AM components, where surface 
inspection may not reveal subsurface inconsistencies. 

To evaluate its predictive performance, the trained ANN 
was used to estimate the natural frequencies from structural 
and material inputs. The model effectively captured the 
relationship between defect characteristics and frequency 
response, providing accurate predictions across different 
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configurations. The ANN architecture included an input layer 
corresponding to the normalized features, followed by three 
hidden layers with 128, 64, and 32 neurons. Each hidden 
layers used ReLU activation, batch normalization, and 
dropout for regularization. The output layer employed a linear 
activation function to predict continuous-valued natural 
frequencies 

The model was trained using the Adam optimizer with a 
learning rate scheduler, and the loss function was defined as 
mean squared error (MSE) to minimize deviations from 
simulation outputs. Preprocessing steps included input 
normalization, principal component analysis (PCA) for 
dimensionality reduction, and noise filtering of simulation 
data. The dataset was divided into training (80%), validation 
(10%), and testing (10%). Hyperparameters tuning was 
conducted through grid search and cross-validation, adjusting 
the number of layers, neurons, dropout rates, and batch size. 
The machine learning outcomes from the training set are as 
follows:  

Table 4: Machine Learning Outcome 

Material Prediction Accuracy (%) MSE (%) 

Inconel 718 84.59 2.39 

Stainless Steel 316 84.0 6.00 
 

Model evaluation showed an average prediction accuracy 
of 84.0% with a MSE of 6.0% for Stainless Steel and 84.59% 
and 2.39% respectively, for the Inconel. While these results 
suggest the model is off to a promising start in identifying 
patterns between structural parameters and vibrational 
responses, they also indicate room for improvement. 
Expanding the dataset and refining data quality could help 
enhance future model performance. 

The combination of Timoshenko beam theory, finite 
element analysis, and machine learning offers a reliable and 
efficient approach for evaluating the vibrational behavior of 
3D-printed aerospace structures. By integrating analytical 
modeling with numerical simulation and predictive 
algorithms, the method enhances defect detection while also 
providing meaningful insight into how internal variations 
affect structural response. It enables the prediction of expected 
vibrational patterns, highlights areas where deviations are 
likely to occur, and guides attention to regions that may 
require further inspection. This makes the approach well 
suited for early-stage qualification and reduces reliance on 
extensive physical testing in the assessment of complex 
aerospace components. 
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