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Abstract—Maritime Domain Awareness (MDA) is essential 

for ensuring global maritime security and combating threats 

such as piracy, smuggling, and illegal, unreported, and 

unregulated (IUU) fishing. Traditional surveillance systems, 

heavily reliant on the Automatic Identification System (AIS), 

face limitations due to AIS deactivation or manipulation by 

vessels engaged in illicit activities. These blind spots highlight 

the need for alternative methods to monitor maritime 

operations more effectively. This study proposes a satellite-

based system architecture that enhances MDA capabilities by 

employing high-resolution imagery and machine learning (ML) 

algorithms to detect and classify vessels in near real-time. The 

system begins with the acquisition of satellite images from 

targeted Regions of Interest (ROIs). These images are processed 

using supervised ML models trained on annotated maritime 

datasets, enabling accurate ship identification based on 

characteristics such as hull shape, dimensions, and structural 

features. A key innovation is the consideration of onboard 

processing, where a machine learning model could be deployed 

directly on the satellite. This approach significantly reduces 

latency in detection and reporting, addresses bandwidth 

limitations in downlink communications, and increases the 

system’s operational responsiveness—crucial for time-sensitive 

maritime interventions. While AIS data is not fused in the 

current implementation, its integration is planned for future 

work. Incorporating AIS signals can provide valuable metadata 

for cross-verification with satellite detections, improving the 

identification of non-compliant or suspicious vessels. However, 

in this study, AIS is acknowledged only as a contextual 

reference. The proposed system is evaluated through 

performance simulations, focusing on detection accuracy, 

classification precision, and onboard processing efficiency. This 

work demonstrates the potential of combining satellite imagery 

and machine learning for autonomous maritime monitoring. It 

establishes a scalable foundation for future MDA systems, with 

applications including enforcement against IUU fishing, 

enhancing port security, and aiding in search and rescue 

operations. Future developments will include AIS fusion and 

multispectral image analysis to broaden system functionality 

and reliability.  

Keywords—Maritime Domain Awareness (MDA), Satellite 

Imagery, Machine Learning, Ship Detection 

I. INTRODUCTION  

Maritime Domain Awareness (MDA) refers to the 

effective understanding of anything associated with the 

maritime domain that could impact national security, 

commerce, or the environment. As global maritime traffic 

increases and geopolitical tensions persist, MDA becomes a 

strategic imperative for securing territorial waters, combating 

illicit activities, and ensuring the sustainable use of marine 

resources. Applications of MDA range from tracking 

commercial shipping routes and monitoring fishing zones to 

supporting search and rescue operations and enforcing 

maritime law. As such, governments and agencies 

increasingly invest in technologies and systems that enhance 

situational awareness across vast oceanic areas. 

One of the primary tools in achieving MDA is the 

Automatic Identification System (AIS), which is mandated for 

most large vessels under international regulations. AIS 

transmits real-time information such as vessel identity, 

position, heading, and speed, allowing authorities to track 

maritime traffic efficiently. However, AIS has significant 

limitations. Vessels involved in illicit activities, such as illegal 

fishing, smuggling, or unauthorized maritime incursions, 

often deactivate their AIS transponders or falsify their location 

data to avoid detection. Furthermore, AIS signals can be 

spoofed or jammed, creating vulnerabilities in maritime 

situational awareness. These limitations reveal critical blind 

spots in surveillance systems that rely solely on AIS, thus 

reinforcing the need for complementary and resilient 

monitoring technologies. 

To address these gaps, vision-based computational 

monitoring using satellite imagery has emerged as a promising 

solution. High-resolution optical and synthetic aperture radar 

(SAR) imagery provides wide-area surveillance capabilities 

that are passive and independent of AIS transmissions. By 

applying machine learning algorithms, particularly 

convolutional neural networks (CNNs), to satellite images, it 

is possible to autonomously detect, classify, and track vessels, 

even in the absence of AIS signals. This study focuses 

specifically on the use of high-resolution optical imagery 

combined with supervised learning models for ship detection 

and classification. 

This work is organized to present a comprehensive 

overview of the proposed satellite-based maritime 

surveillance system and its potential for enhancing Maritime 

Domain Awareness (MDA). Initially, the study introduces the 

challenges of traditional vessel monitoring approaches, 

emphasizing the limitations of the Automatic Identification 



System (AIS) in detecting non-compliant or illicit maritime 

activity. Following this, the system architecture is detailed, 

including image acquisition strategies, machine learning 

model development for vessel detection and classification, 

and the rationale for onboard processing implementation. 

Subsequently, a performance evaluation of the proposed 

approach is conducted through simulations, highlighting 

detection accuracy, classification precision, and 

computational efficiency in a satellite-constrained 

environment. The work concludes with a discussion on future 

developments, including the integration of AIS data for cross-

validation and the potential for real-time operational 

deployment. 

II. LITERATURE SURVEY 

 

A.  Limitations of AIS and the Need for Complementary 

Systems 

The Automatic Identification System (AIS) is a 
standardized maritime communication system designed to 
enhance the safety and efficiency of vessel navigation. AIS 
operates primarily in the Very High Frequency (VHF) 
maritime band, broadcasting real-time navigational and 
identification data, including vessel name, Maritime Mobile 
Service Identity (MMSI), position, course over ground 
(COG), speed over ground (SOG), navigational status, and 
voyage-related information. This data is transmitted 
autonomously at regular intervals and can be received by other 
ships, coastal stations, and increasingly, by satellite-based AIS 
(S-AIS) receivers, enabling a global reach. 

The AIS plays a critical role in Maritime Domain 
Awareness (MDA), but its effectiveness is challenged by 
several technical, operational, and policy-related issues. 
Technically, the vast volume of AIS data comprising real-time 
vessel positions and voyage information, requires robust 
systems for validation, fusion, storage, and integration, while 
the risk of overloading the AIS VHF Data Link (VDL) due to 
increased usage and binary applications may necessitate 
updates to the communication standard or additional 
infrastructure. Policy challenges include the management of 
AIS binary applications, regulation of data sharing among 
governmental and private entities, and the unintended 
commercial use of AIS data, which may conflict with 
international laws and discourage vessel compliance. 
Frequency allocation within the congested VHF maritime 
band further complicates long-range AIS reception, especially 
by satellite. Additionally, the reliability of AIS data depends 
on correct onboard equipment operation and data entry, 
necessitating improved enforcement mechanisms to ensure 
system integrity and prevent issues such as interference and 
jamming. Addressing these challenges is essential for AIS to 
fully support global maritime security and surveillance 
objectives. [1] 

 

B.  Satellite Imagery for Vessel Detection 

The integration of deep learning techniques into maritime 

surveillance has significantly advanced the capabilities of 

vessel detection and classification using satellite imagery. 

Reference [2] introduced a deep learning framework that 

leverages convolutional neural networks (CNNs) to detect 

vessels in satellite images, demonstrating high accuracy in 

various maritime scenarios. Similarly, reference [3] 

employed CNN-based models for vessel detection, 

emphasizing the importance of robust preprocessing and data 

augmentation to enhance detection performance. A hybrid 

approach combining traditional image processing with deep 

learning was proposed in a study presented at the IEEE 

International Geoscience and Remote Sensing Symposium 

(IGARSS) [4], which improved detection accuracy in high-

resolution satellite imagery by integrating multiple feature 

extraction methods. In the realm of vessel classification, 

reference [5] explored the use of capsule networks, which 

capture spatial hierarchies more effectively than traditional 

CNNs, resulting in improved classification of maritime 

vessels. Collectively, these studies underscore the 

transformative impact of deep learning on maritime domain 

awareness, offering enhanced accuracy and efficiency in 

vessel detection and classification tasks. 

C. AIS and Optical Vessel Classification Data Fusion 

The fusion of Automatic Identification System (AIS) data 
with satellite imagery has emerged as a pivotal technique in 
enhancing maritime surveillance and vessel detection. A 
method was developed that integrates AIS data with visual 
detections from deep learning models, such as YOLOv5, to 
enrich datasets with vessel-specific information like type, size, 
speed, and direction [6]. This approach utilizes homography-
based matching to associate detected ships with corresponding 
AIS messages, achieving an association accuracy of up to 
85.06% for fixed cameras. Another study proposed a fusion 
method combining AIS data with high-resolution satellite 
imagery to improve the identification and positioning of 
maritime targets [7]. By employing a point-set matching 
algorithm and a fuzzy comprehensive decision method, this 
approach significantly reduced positioning errors, with over a 
70% reduction in root mean square error and positioning 
errors controlled within 4 pixels. A fully automated 
framework was also introduced that fuses AIS data with 
Synthetic Aperture Radar (SAR) satellite images for vessel 
detection [8]. This method automatically annotates satellite 
images by correlating them with AIS data, enabling the 
training of convolutional neural networks without the need for 
manually labeled datasets. The trained model achieved an 
accuracy of 88% in ship detection, demonstrating the 
effectiveness of the approach in identifying vessels, including 
those that may have turned off their AIS transponders. 

III. METHODOLOGY 

This work proposes a structured and systematic 

methodology aimed at simulating, constructing, training, and 

evaluating a maritime vessel detection model using Google 

Earth image. The overall approach was designed to reflect 

realistic operational conditions by considering the use of a 

Commercial Off-The-Shelf (COTS) optical payload onboard 

a small satellite operating in low Earth orbit (LEO) as 

parameter to build the dataset. The methodology integrates 

orbital mechanics, sensor modeling, region-specific data 

collection, synthetic data generation, and machine learning 

model development. The methodology follows a structured 

pipeline, as illustrated in Figure 1, which ensures consistency 

between the system-level assumptions and the conditions 

under which the model is trained. The primary objective of 

this pipeline is to produce a dataset and a detection algorithm 



that accurately reflect the constraints and capabilities of a real 

satellite mission. The pipeline is composed of the following 

sequential steps: 

 

 

 

 

 

Figure 1 - End-to-End Methodology Pipeline for Mission-

Constrained Dataset Generation and Model Training 

A. Camera Consideration 

The dataset selection and interpretation were guided by the 

assumption of using a Commercial Off-The-Shelf (COTS) 

optical camera module suitable for small satellite platforms. 

The assumed payload characteristics include a Ground 

Sampling Distance (GSD) of 4.75 meters at an orbital altitude 

of 500 km and a swath width of 19.4 km at the same altitude. 

This assumption is critical for the system design as it defines 

the spatial resolution and coverage area that influence the 

detectable ship sizes and the number of vessels per image file.  

B. Orbit Consideration 

Orbital Altitude Influence on GSD, for this study, an 

orbital altitude of approximately 370 km is considered. This 

lower altitude provides an improved Ground Sampling 

Distance (GSD) when compared to higher orbits. Assuming a 

linear relationship between altitude and GSD, and using the 

baseline GSD of 4.75 meters at 500 km, the GSD at 370 km 

can be estimated by the proportional formula: 

𝐺𝑆𝐷370 = 𝐺𝑆𝐷500 ×  (
370

500
)                                              (1) 

This higher resolution enhances the ability to detect and 

classify smaller vessels and fine features. The table 1 

illustrates the comparative effect of orbital altitude on GSD. 

Table 1 - Estimated Ground Sample Distance (GSD) at Different 

Orbital Altitudes and Corresponding Impact on Image Resolution 

Altitude 

(km) 

Estimated 

GSD (m) 

Resolution Impact 

600 5.70 Coarse – suitable for large 

ships 

500 4.75 Baseline – moderate detail 

400 3.80 Improved – small vessel 

detection 

370 3.52 High – enhanced structural 

detail 

These values assume a nadir-pointing camera with 

consistent focal length and sensor properties. This reduction 

in altitude directly impacts revisit time, swath width, and 

atmospheric drag considerations, which must be accounted for 

in mission planning. 

C. Region of Interest Consideration 

The selected Region of Interest (ROI) encompasses the 

South Atlantic region, specifically the Brazilian Exclusive 

Economic Zone (EEZ), Figure 2 highlights in red the selected 

Region of Interest (ROI). This region comprises extensive 

maritime zones that are subject to significant economic 

activities and recurrent incidents of Illegal, Unreported, and 

Unregulated (IUU) fishing. The selection of this area is 

justified by its strategic relevance to national interests, the 

challenges associated with effective surveillance coverage, 

and its critical role within Brazil's maritime security policy. 

 

Figure 2 - Brazilian Exclusive Economic Zone (EEZ), Region 

of Interest (ROI) 

D. Dataset Description 

To assess the potential imaging opportunities and 

construct a representative dataset, an orbital analysis was 

conducted using Systems Tool Kit (STK) software. The 

analysis simulated a scenario over a 30-day period with a time 

step of 1 second, allowing precise estimation of access 

durations and satellite visibility windows over targeted 

maritime regions. Based on the visibility events obtained from 
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this analysis, image acquisition opportunities were derived. 

The resulting synthetic dataset comprises a total of 2,592,000 

satellite image captures across multiple oceanic and coastal 

locations globally. From this global dataset, a subset of 17,344 

images was specifically selected from the Region of Interest 

(ROI) encompassing the Brazilian Exclusive Economic Zone 

(EEZ) Also known as Blue Amazon. This selection was 

guided by the orbital passes that yielded favorable imaging 

geometries over the ROI. The extracted subset formed the 

basis for training and evaluating the detection models under 

operationally relevant conditions. 

E. Dataset Preparation 

To simulate the conditions of a COTS camera onboard a 

satellite, images were captured using the Google Earth API. 

The capture parameters of the API were chosen to emulate a 

Ground Sampling Distance (GSD) of 3.52 meters and a swath 

width of 14.356 km. Each image was rendered with a 

resolution of 1280 × 1280 pixels, replicating the 

characteristics of the assumed onboard optical sensor at an 

altitude of 370 km. This step was fundamental in ensuring 

consistency between dataset generation and the expected 

spatial resolution of an real system. 

After acquisition, a segmentation step was applied to 

identify and retain only images containing any portion of 

water, as illustrated in Figure 3. This process was essential to 

filter out frames dominated by island regions, port 

infrastructure, or areas with minimal ocean coverage, 

common occurrences due to the proximity to coastlines. A 

water binary segmentation algorithm was employed to 

exclude land-dominated images, ensuring that the retained 

dataset accurately reflects typical maritime observation 

conditions 

 
Figure 3 - Water Mask Segmentation Process for Filtering 

Maritime Observation Imagery 

 

To enrich the dataset, augmentation procedure was 

implemented. Notably, this augmentation involved the 

insertion of synthetic ship images rather than real ship cutouts. 

Computer-generated models of ships, designed to match real-

world vessel types and dimensions, were superimposed onto 

oceanic backgrounds according to the segmentation. The 

synthetic ships were varied in orientation, scale, illumination, 

and sea conditions to simulate operational diversity. This 

method allowed for controlled training data generation while 

preserving the generalization ability of the model. 

F. Ship Classification 

 

The synthetic ships added to the dataset were modeled to 

represent a range of vessel categories commonly encountered 

in maritime monitoring operations. These vessel types were 

classified into three primary size categories based on their 

length: small (10–20 meters), medium (21–50 meters), and 

large (51–100 meters). The pixel dimensions were estimated 

based on a Ground Sampling Distance (GSD) of 3.52 meters 

at 370 km altitude and an image resolution of 1280 × 1280 

pixels as referenced in table 2. 

 
Table 2 - Vessel Size Categories and Image Resolution Details 

Size 

Category 

Estimated 

Length 

(m) 

Estimated 

Width 

(m) 

Pixel 

Length 

(px) 

Pixel 

Width 

(px) 

Large 51–100 10–20 15–28 3–6 

Medium 21–50 5–10 6–14 1–3 

Small 10–20 2–4 3–6 1–2 

This classification scheme ensured diversity in the types 

and dimensions of maritime targets present in the training 

dataset, which is essential for generalizing the detection model 

across a wide spectrum of operational scenarios, see Figure 4 

for the types of ships included. 

 

Figure 4 - Representative Types of Ships Used in the Training 

Dataset 

G. Model’s Benchmark 

In this study, four distinct convolutional neural network 

(CNN) architectures were implemented and evaluated for the 

task of ship classification using satellite imagery. All models 

were selected based on their proven effectiveness in object 

detection tasks and were configured with Feature Pyramid 

Networks (FPN) to enhance multi-scale feature extraction, a 

critical capability for detecting ships of varying sizes and 



orientations. The first model employed was Faster R-CNN 

with MobileNetV3 Small and FPN, designed to offer a 

favorable trade-off between inference speed and accuracy, 

particularly suitable for deployment in resource-constrained 

environments such as onboard satellite processing units. The 

second architecture, Faster R-CNN with MobileNetV3 Large 

and FPN, builds upon this by incorporating a larger backbone, 

thereby increasing the model’s representational capacity while 

maintaining relatively efficient computation. The third model 

utilized was RetinaNet with ResNet50 and FPN. RetinaNet is 

a one-stage detector that incorporates focal loss to address the 

class imbalance problem inherent in object detection. The 

ResNet50 backbone provides deep feature extraction 

capabilities, making it a robust choice for complex scenes 

involving cluttered backgrounds or partially occluded vessels. 

Finally, Faster R-CNN with ResNet50 and FPN was also 

implemented to leverage the high detection accuracy of the 

two-stage Faster R-CNN framework, combined with the depth 

and generalization ability of the ResNet50 backbone. Table 3 

summarizes the comparative characteristics of each model in 

terms of parameter size and response time in frames per 

second (FPS): 

Table 3 - Comparison of model sizes and response times (FPS) 

Model Name Size 

(Parameters) 

Response 

Time (FPS) 

FasterRCNN 

Mobilenet v3 Small FPN 

3.9M 70-80 

FasterRCNN 

Mobilenet v3 Large FPN 

6.1M 50-60 

RetinaNet 

ResNet50 FPN 

34.0M 20-30 

FasterRCNN 

ResNet50 FPN 

41.0M 14-20 

The results in Table 3 highlight a clear trade-off between 

model complexity and processing speed. The MobileNetV3-

based models, with significantly fewer parameters (3.9M and 

6.1M), demonstrate superior real-time performance with 

response times reaching up to 80 FPS, making them suitable 

for real-time applications and hardware-limited platforms. In 

contrast, the ResNet50-based models offer greater detection 

accuracy due to deeper feature extraction, but this comes at 

the cost of reduced inference speed, with the heaviest model 

(Faster R-CNN with ResNet50 FPN) reaching only 14–20 

FPS. This performance comparison supports a balanced 

selection of CNN architectures depending on the constraints 

and goals of the deployment scenario, particularly for onboard 

processing in space systems where computational efficiency 

is critical. 

The reported performance values were obtained by 

averaging results during inference using the model.eval() 

mode in PyTorch, with the torch.no_grad() context enabled to 

prevent gradient computation. A batch size of 2 was utilized 

during testing, and all experiments were conducted on a 

system equipped with an NVIDIA RTX 4060 GPU. The 

integration of the Feature Pyramid Network (FPN) in all 

models contributed to improved handling of multi-scale object 

detection, which is particularly relevant for detecting ships of 

varying dimensions. MobileNet backbones were selected for 

their optimization toward near real-time performance on 

resource-constrained devices. In contrast, the Faster R-CNN 

framework is generally associated with higher detection 

accuracy, while RetinaNet is recognized for offering a 

balanced compromise between accuracy and computational 

efficiency. An initial evaluation was performed to identify 

which models could effectively utilize a fourth image channel, 

an alpha channel, alongside the standard RGB configuration. 

This additional channel encodes spatial information derived 

from the image segmentation process, indicating precise ship 

locations within the dataset. To ensure a fair and consistent 

comparison across architectures, all models were modified to 

accept both three-channel (RGB) and four-channel (RGB+A) 

inputs. 

 
Figure 5 - Model Performance Evaluation and Comparison of 

Multi-Scale Ship Detection with Multi-Channel Input 

Configurations 

The Total Loss function used in the training of these 

models was as follows: 

Classification Errors + Bounding Box Regression Error + 

Detection Error of Any Object + FPN Regression Error 

The Figure 5 presents the impact of model complexity on 

the performance gains obtained from incorporating an 

additional alpha channel in the input images, in comparison to 

the standard RGB configuration. The vertical axis indicates 

the relative gain (in percentage) of using four-channel inputs 

(RGB + Alpha), while the horizontal axis represents the model 

size in millions of parameters. To produce these results, each 

model was trained on a subset of 2,000 labeled samples from 

the training dataset. Evaluation was conducted over 1,000 

validation samples by computing the average of the total 

accumulated losses, allowing for a consistent and comparative 

performance assessment across all models. The alpha channel, 

introduced as a fourth input channel, encodes spatial priors 

derived from the segmentation stage, highlighting areas of 

probable ship presence. This feature was included to assess 

whether such spatial guidance could enhance detection 

capabilities, particularly in low-complexity models. The 

experimental results clearly demonstrate that lightweight 

architectures, notably MobileNetV3 Small, significantly 

benefit from the inclusion of the alpha channel, achieving over 



15% improvement in loss reduction compared to their RGB-

only counterparts. MobileNetV3 Large also exhibits a notable 

gain, albeit lower, around 8%. This behavior suggests that 

lightweight models, which are constrained in depth and 

feature extraction capacity, are able to leverage the additional 

spatial information to better localize and classify ship targets. 

In contrast, larger models such as RetinaNet ResNet50 and 

Faster R-CNN ResNet50 show minimal to negative 

performance gains when incorporating the alpha channel. In 

the specific case of RetinaNet, performance degradation was 

observed, indicating that the additional channel may be treated 

as noise. This can be attributed to the high representational 

capacity of such models, which are equipped with numerous 

convolutional filters designed to autonomously extract 

complex spatial and contextual features. Consequently, these 

models may already learn to localize regions of interest 

effectively using RGB inputs alone, rendering the alpha 

channel either superfluous or counterproductive. In summary, 

Figure 5 underscores the relevance of model capacity in 

determining the effectiveness of data augmentation strategies 

such as multi-channel input expansion. While lightweight 

architectures benefit markedly from the addition of a spatially 

informative channel, larger and more complex models exhibit 

limited or adverse responses, emphasizing the importance of 

tailoring input design to model characteristics. 

H. Training Setup 

After preliminary analysis, two models were chosen for 

full experimentation: FasterRCNN ResNet50 configured with 

RGB only and The MobileNet V3 Small configured for 

RGB+A. 

The dataset was partioned into three subsets as follows: 

• Training Set: 9,621 images 

• Validation Set: 4,124 images 

• Test Set: 4,576 images (unseen during training) 

Of the total annotated images containing ships, the 

distribution was as follows: 

• Training Images with Ships: 8,664 

• Validation Images with Ships: 3,713 

The synthetic ships used for training comprised a total of 

90 distinct vessel models, distributed across different size 

categories as defined below: 

Key training settings included: 

• Input image resolution: 1280x1280 pixels 

• Batch size: 4 for training and 2 for validation 

• Learning rate: 0.01 with scheduled decay at 0.8 

according to validation monitoring 

• Optimizer: Stochastic Gradient Descent (SGD) 

• Epochs: 30  

To enhance model robustness and generalization, standard 

data augmentation techniques were employed, including 

horizontal flipping, rotation, color jitter, and mosaic 

augmentation. Additionally, label smoothing and Intersection 

over Union (IoU)-based loss functions were applied to 

improve the precision of bounding box predictions. 

I. Evaluation Framework 

 

The evaluation framework for the vessel detection and 

classification model was structured around widely adopted 

object detection performance metrics to ensure 

comprehensive assessment and comparability. These metrics 

provide a multi-faceted view of the model’s capabilities in 

identifying vessels under varied maritime scenarios. 

 

1. Mean Average Precision (mAP@0.5) 

 

The principal metric for evaluating detection performance 

is the mean Average Precision at an Intersection over Union 

(IoU) threshold of 0.5, denoted as mAP@0.5. This metric 

reflects the model’s ability to correctly localize objects across 

different classes. 

 

2. Focal Loss with Weighted Class (FLWC) 

 

Custom loss function that extends the traditional Focal 

Loss by integrating class-specific recall weights that 

emphasizes hard-to-classify examples by reducing the loss 

contribution of well-classified ones, the addition of weighted 

recall further biases the optimization process toward 

improving the recall of underrepresented or critical classes. 

This approach is particularly useful in object detection or 

classification tasks where missing (or less present) certain 

classes (low recall) is more detrimental than false positives. 

By dynamically scaling the loss with recall-based weights, the 

model is guided to pay more attention to classes where recall 

performance is lacking, leading to improved sensitivity and 

robustness in challenging scenarios. 

 

3. F1 Score 

 

The F1 Score is the harmonic mean of precision and recall, 

providing a single performance metric when an equilibrium 

between the two is desired. It is particularly useful in maritime 

contexts where both under-detection (missed vessels) and 

over-detection (false alarms) can carry operational costs. 

 

4. Training Results 

 

1. FastrRCNN ResNet50 (RGB) 

The FastrRCNN ResNet50 network used a validation loss 

function as follows: 

𝑉𝑎𝑙𝐿𝑜𝑠𝑠 = (1 − 𝑚𝐴𝑃@0.5) + 𝐹𝐿𝑊𝐶(𝐹1)                        (2) 

The table 4 present the weight given to the classes for the 

FLWC: 

 



 
Table 4 - Weight given to the classes for the FLWC 

Class Weight 

LARGE 0.5  

MEDIUM 1.0 

SMALL 1.5 

 

Since there is no expectation of running a network of this 

size onboard, the choice of these parameters was made to 

pursue more precision in small objects without losing classes 

using F1 to balance. The detailed comparison of training and 

validation loss is shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 - Training and Validation Loss Over Epochs for Object 

Detection Precision – FasterRCNN ResNet50 FPN (RGB) 

It is interesting to observe validation oscillation due to the 

combination of Validation Loss parameters. However, the 

training loss follows a smooth curve demonstrating the high 

power of this network in detecting small objects. 
 

 

Figure 7 - Trust Percentage on an Unseen Example Not Included 

in Training or Validation - FasterRCNN ResNet50 FPN (RGB) 

As shown in Figure 7, the very high percentage of trust 

obtained by this network can be observed in an example that 

was not in either the training or validation datasets. 
 

2. Mobilenet V3 Small (RGB+A) 

The Mobinet network used a validation loss function as 

follows: 

𝑉𝑎𝑙𝑙𝐿𝑜𝑠𝑠 = 0.5 × (1 − 𝑚𝐴𝑃@0.5) + 0.1 × 𝐹𝐿𝑊𝐶(𝑅𝑒𝑐𝑎𝑙𝑙)  (3) 

The table 5 present the weight given to the classes for the 

FLWC: 

 
Table 5 - Weight given to the classes for the FLWC 

Class Weight 

LARGE 1.5  

MEDIUM 1.0 

SMALL 0.5 

This combination of parameters allowed the network to 

converge in its learning and, generalizing enough, not being 

so penalized by the deficiency of detecting smaller ships, since 

it has less capacity for small objects. 

This network has more possibility of embedded execution. 

So, the weights between the terms of the equation were chosen 

to favor more the hit of bounding boxes than the class and 

leave an eventual disambiguation to be done on the ground. 

For this reason, Recall was also chosen as a measure to weigh 

against the classes. The detailed comparison of training and 

validation loss is shown in Figure 8.  

 

 

 

 

 

 

 

 

Figure 8 - Training and Validation Loss Over Epochs for Object 

Detection Precision – Mobilenet v3 Small FPN (RGB +A) 

It is interesting to observe the same oscillation of the 

validation due to the combination of parameters of the 

Validation Loss. However, in this case it tends to take much 

longer to stabilize due to the size of the network and the 

difficulty of the network alone detecting smaller ships 

correctly without the help of Validation to correct its learning 

rate. 

 



 

Figure 9 - Trust Percentage on an Unseen Example Not Included 

in Training or Validation - Mobilenet v3 Small FPN (RGB +A) 

 As shown in Figure 9, Comparatively, we can see the 

same image where a detection below the threshold of 0.5 was 

missed and small divergences in the boxes with a lower 

degree of confidence in the smaller classes as well. 
 

IV. SYSTEM ARCHICTUCTURE AND ONBOARD CONSTRAINTS 

Designing a satellite-based system capable of detecting 

and classifying maritime vessels onboard requires the 

consideration of various architectural and environmental 

constraints. Based on performance results of two selected 

networks, it is shown in the Figure 10 a high-level diagram of 

potential architecture to be developed as next steps. 

 
Figure 10 – Proposed AI based system hybrid architecture to 

detected and classify ship activities 

A. System Pipeline Considerations 

The system architecture must be capable of supporting a 

sequence of tasks: image acquisition, preprocessing, inference 

using a machine learning model, event handling, and data 

downlink. Each stage must be optimized to operate efficiently 

within the temporal and spatial constraints imposed by the 

satellite's orbit. The pipeline should be designed with 

deterministic timing in mind, ensuring that operations 

complete within the available visibility windows. 

B. Processing Constraints 

Given the limited computational resources onboard small 

satellites, particularly CubeSats, the inference algorithm must 

be lightweight and optimized for constrained environments. 

The system should account for memory limitations, 

processing delays, and energy availability. The software 

should also be able to handle variable workloads depending 

on image content and orbital coverage, making it necessary to 

incorporate adaptive task scheduling. 

C. Thermal and Environmental Considerations 

Thermal dissipation becomes a significant issue when 

operating high-performance computing tasks in space. Since 

radiative heat transfer is the only viable cooling mechanism, 

the architecture must minimize peak processing loads or 

include thermal cycling strategies. In addition, the system 

must be resilient to the radiation environment, which can 

affect processing accuracy and memory integrity. 

D. Power Management 

All onboard systems share a limited power budget. The 

design must consider the need to prioritize mission-critical 

tasks, ensuring that image processing does not interfere with 

core spacecraft operations. Power-aware scheduling and 

energy-efficient algorithmic design are therefore essential. 

The operational profile should be configured to activate 

processing only during specific time windows or conditions, 

such as when passing over regions of interest. 

E. Data Throughput and Communication Limitations 

Another critical consideration is the limitation in data 

downlink capacity. As high-resolution images are data-

intensive, the onboard system must reduce the data volume by 

extracting relevant features (e.g., bounding boxes, 

classifications) and transmitting only essential metadata. This 

requires a careful balance between onboard processing 

complexity and ground-based post-processing requirements. 

F. Autonomy and Fault Tolerance 

Due to the restricted access and command opportunities, 

the system must operate autonomously for extended periods. 

The architecture must include mechanisms for fault detection, 

self-recovery, and robust error handling. Additionally, 



software updates or reconfigurations must be supportable 

without direct physical access, often via remote patching or 

scheduled command uploads. 

G. Attitude Control System (ACS) Considerations 

To ensure that the camera maintains appropriate 

orientation for continuous maritime observation, the attitude 

control system must provide fine-pointing accuracy and 

stability. Challenges include: 

• Precise Geolocation: Accurate pointing enables the 

extraction of meaningful maritime scenes and 

reduces geolocation errors. 

• Stability During Imaging: ACS must prevent jitter 

or drift that could blur images or compromise 

detection accuracy. 

• Sun-Synchronous Requirements: For consistent 

lighting, orbit and attitude planning must 

synchronize with solar positioning. 

The system design must incorporate attitude-aware 

imaging strategies to coordinate between ACS and the 

payload schedule, ensuring alignment with regions of interest. 

H. TT&C Constraints 

Telemetry, Tracking, and Command (TT&C) subsystems 

must handle status reporting, command execution, and the 

downlink of compressed results. Constraints include: 

• Limited Bandwidth: Only reduced metadata and 

selected image crops should be transmitted. 

• Prioritization Logic: The system must decide which 

detections are most critical to send, based on 

geolocation, class, or detection confidence. 

• Command Execution Delay: As satellite visibility 

windows are limited, command responsiveness may 

be delayed, necessitating autonomous fallback 

behavior. 

I. Modularity and Scalability 

The system should be modular to facilitate future upgrades 

or adaptations to new missions or sensor types. Scalability is 

also important, as the same architectural principles should 

ideally apply whether the platform is a single CubeSat or part 

of a distributed constellation. This enables coordinated 

coverage of larger maritime regions and more persistent 

monitoring capabilities. 

V. CONCLUSION 

This study presents a comprehensive and operationally 

grounded methodology for the development of a maritime 

vessel detection system based on satellite imagery, with a 

particular focus on the use of Commercial Off-The-Shelf 

(COTS) optical payloads onboard small satellites operating 

in low Earth orbit. The proposed framework integrates 

multidisciplinary elements—ranging from orbital analysis, 

sensor modeling, dataset generation and machine learning 

techniques—within a cohesive pipeline that maintains 

consistency between real-world mission constraints and 

training data assumptions. By emulating satellite imaging 

parameters using Google Earth API and augmenting the 

dataset with synthetically generated ship models tailored to 

realistic maritime scenarios. The methodology ensures 

representativeness of the data and robustness of the detection 

models. The evaluation of four distinct CNN architectures, 

enhanced with Feature Pyramid Networks and tested across 

RGB and RGB+Alpha configurations, offers valuable 

insights into the trade-offs between inference speed, 

detection accuracy, and model complexity—particularly 

relevant for resource-constrained satellite platforms to run 

those models onboard. Experimental results underscore the 

effectiveness of lightweight models such as Faster R-CNN 

with MobileNetV3, which demonstrate significant gains in 

performance with the incorporation of spatial priors via an 

alpha channel. Conversely, deeper architectures such as 

ResNet50 show diminishing returns or even performance 

degradation with additional channel information, suggesting 

that model capacity must be carefully matched with input 

complexity. Furthermore, the study addresses critical system-

level considerations required for onboard deployment, 

including thermal management, power constraints, limited 

computational resources, data reduction strategies, and the 

need for autonomy and fault tolerance. The proposed 

architecture supports a modular and adaptive inference 

pipeline capable of real-time operation, prioritizing the 

detection and classification of vessels over strategic maritime 

regions such as the Brazilian Exclusive Economic Zone. 

 

VI. FUTURE WORKS 

The advancement of autonomous ship detection and 

classification onboard small satellites represents a promising 

step toward achieving persistent maritime domain awareness, 

particularly over remote or under-monitored oceanic regions. 

While significant progress has been made in developing an 

onboard image processing framework capable of identifying 

vessels from satellite imagery, further research is required to 

integrate this capability with AIS data in a coherent and 

operationally effective manner.  

AIS is a cooperative system that transmits vessel 

identification, location, speed, and other navigation-related 

data via VHF radio signals. Although widely adopted, AIS 

presents limitations due to intentional disabling, spoofing, or 

coverage gaps in certain areas, especially where ground-

based AIS receivers are unavailable. The integration of an 

data generated by an onboard vision-based detection system 

with AIS receivers on the same satellite platform offers the 

opportunity to cross-validate observed and reported vessel 

positions, thus enabling the detection of non-cooperative or 

suspicious maritime activity.  

In this context, future work will focus on establishing a 

data fusion framework that allows for the correlation of visual 

detections obtained from optical or SAR imagery with AIS 

broadcasts acquired in real time. This could be done primarily 

using the proposed hybrid architecture before deploying 

onboard. By accurately geolocating vessels detected through 

image processing and associating them with AIS-transmitted 

positions, the system can not only confirm ship behavior and 



characteristics but also flag discrepancies in reported and 

observed information. Ships that are visually detected but not 

transmitting AIS can be marked as potentially non-compliant 

or illicit, warranting further analysis or reporting to maritime 

authorities.  

The integration requires the development of a software 

architecture capable of harmonizing heterogeneous data 

sources onboard the satellite. This includes the ingestion and 

temporal alignment of AIS data streams with satellite image 

acquisition events. The challenge lies in real-time or near-

real-time matching of AIS signals with detected ships, 

especially considering uncertainties in AIS message delays, 

image georeferencing errors, and variations in satellite 

attitude. Probabilistic data association techniques, such as 

Kalman filters or joint probabilistic data association (JPDA), 

may be employed to associate AIS targets with visual 

detections in a dynamic maritime environment.  

Furthermore, the implementation of onboard decision-

making logic will be necessary to handle discrepancies in 

AIS-image correlation. For example, in cases where a 

detected vessel lacks a corresponding AIS signal within a 

defined spatial-temporal window, the system should 

autonomously classify this event as an anomaly and prioritize 

the image or metadata for downlink. Conversely, when a 

match is found, the onboard system may only transmit a 

condensed metadata packet summarizing the detection and 

AIS match, thereby conserving bandwidth. Such event-

driven data transmission strategies are essential for CubeSat 

missions operating under stringent power and telemetry 

constraints.  

Operational integration also involves consideration of 

AIS receiver capabilities onboard small satellites. Given the 

limitations imposed by orbital dynamics, antenna gain, and 

signal processing complexity, AIS receivers must be 

designed to ensure high-fidelity reception in low Earth orbit, 

even in high-density maritime zones. Additionally, 

regulatory compliance must be observed in terms of the use 

of AIS frequencies and VHF antennas in space.  

The fusion of satellite-based image analytics and AIS data 

presents a novel and powerful tool for maritime situational 

awareness. Future research will explore the co-optimization 

of hardware and software components to achieve robust, real-

time integration of these systems onboard CubeSats. This 

includes testing the framework in relevant orbital 

environments, evaluating performance over real maritime 

traffic, and validating the end-to-end system against ground-

truth data. Ultimately, the convergence of visual detection 

and AIS reception aboard a single satellite platform can 

significantly enhance the identification, classification, and 

behavioral analysis of maritime traffic on a global scale. 
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