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Abstract— This paper presents the deployment of the 

CORSA edge foundation model on the Jetson Orin NX. The 

CORSA encoder and the application-specific decoder are 

implemented as separate components, although the decoder 

depends on the encoder for input representations. This modular 

design enables greater flexibility. The on-board system is 

capable of both processing sensor data into high-level products 

and generating compressed representations in real time. 
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I. INTRODUCTION (HEADING 1) 

The discrepancy between data production and downlink 
capabilities in space has been a well-known issue for decades. 
The gap is particularly challenging for missions with high 
spatial or spectral resolutions, such as IPERLITE, which can 
acquire up to 5 TB of data per day, of which only 20 Gb can 
be downlinked. 

Despite a strong preference for lossless compression 
methods, even the academic remote sensing community has 
shown a willingness to consider lossy compression techniques 
due to this bottleneck. As a result, near-lossless methods, 
which preserve the full quality of raw images without 
maintaining exact bit-level fidelity, have gained significant 
attention. 

In this technical paper, we present a deep learning (DL) 
model which functions not only as a near-lossless 
compression solution but also as an edge foundation model. 
This also enables efficient fine-tuning for mission-specific 
tasks, allowing satellites to prioritise and downlink only the 
most relevant data. 

II. SOLUTION 

A. Architecture 

Our deep learning solution, CORSA [1], is a hierarchical 
vector quantized variational auto-encoder (HVQVAE) trained 

through self-supervised learning on a reconstruction task. A 
general outline of the solution’s architecture is illustrated in 
Fig 1. 

The most widely used version of CORSA is a two-level 
HQVAE with a convolutional backbone. Variants of CORSA 
include SwinFormer backbones, three-level HVQVAEs, 
multi-modal fusion backbones, and masked auto-encoder 
training. The edge foundation model’s compression power 
and semantic expressivity lie in its codebooks, which are a 
consistent feature of the deep learning model across all 
versions. 

During training, the DL model interprets an input image as 
an abstract ensemble of features, which are subsequently 
mapped onto a set of discrete vectors known as the codebook. 
This codebook evolves during self-supervised training and is 
therefore not universal. 

B. Compression 

CORSA’s compression capabilities derive directly from 
the existence of the codebook. Once training is complete, the 
model’s codebook is fixed, and each feature vector it contains 
is associated with a unique index. These indices can be stored 
as a 4-bit, 6-bit, 8-bit, or 12-bit integer, depending on the 
codebook’s size. Compression is achieved by transforming an 
image into a collection of feature vectors, which are then 
mapped to the static codebook and represented by 
corresponding indices. This collection of indices constitutes 
the compressed representation of the image. 

These indices can be subsequently mapped back to the 
corresponding feature vectors. A separate model, the CORSA 
decoder, uses these vectors to reconstruct the output image, as 
illustrated in Fig. 2. 

 

Fig. 1. CORSA model blueprint 

 
Fig. 2. Input (top) and output (bottom) of a CORSA model trained on 
APEX simulated data (10m spatial resolution and 10nm spectral resolution) 

in the visible spectrum (pseudo-RGB colours) 



Like all DL methods, CORSA exploits patterns and 
complex correlations in the data to achieve compression. 
Consequently, its effectiveness depends on the nature of the 
data compressed. The near-lossless compression ratio, defined 
as the ratio at which the reconstruction quality remains 
visually indistinguishable from the original, increases as 
spatial resolution decreases and spectral resolution increases. 
As a result, the edge foundation model demonstrated its 
strongest compression performance when applied to 
hyperspectral data, as shown in Table 1. 

TABLE I.  CORSA MODELS 

Sensor Spatial res. a CR b PSNR e PSF f SSIM g SAM e 

S-2c 

(RGB-
NIR) 

10m 20 50 N/A 0.99 N/A 

S-2c 10-30m ~30 50 N/A 0.99 N/A 

ENMAP 30m 300 50 0.36 0.98 0.99 

APEX 

Sim.d 
10m 80 48 0.39 0.98 0.99 

a. Stands for resolution. Spectral resolution is poorly applicable to multispectral data 

b. Compression Ratio 

c. S-2 stands for Sentinel-2 

d. APEX Sim. refers to data simulated for the MOVIQ project, financed by VLAIO, by resampling 

the airborne APEX hyperspectral imagery to simulate the imagery produced by a hyperspectral 

satellite camera 

e. Peak Signal-to-Noise Ratio relative to a 14-bit signal, for the exception of the Apex Simulated data 

f. Point-Spread Function: see Annex A for additional information 

g. Structural Similarity Index Measure: used to estimate the semantic quality of an image 

h. Spectral Angle Mapping: estimates the quality of reconstructed spectral signature for a given pixel, 

only applicable to hyperspectral imagery  

 

It is important to note that, unlike classical near-lossless 
compression techniques, which impose a strict upper bound 
on the reconstruction error, our statistical approach minimizes 
the average error over the target distribution. [see Annex B] 

Although CORSA models are sensor-specific, knowledge 
acquired from one sensor can be transferred for another with 
minimal effort. For example, the compression algorithm 
trained on ENMAP hyperspectral data has been successfully 
transferred to PRISMA data, as illustrated in Fig. 3. and Fig. 
5. Even one-shot transfer yields interesting, though imperfect, 
results, as seen in Fig. 4. 

 

 

 

 

 

 

CORSA’s cross-sensor transferability may be interpreted as a 
consequence of the model developing a high-level 
representation of remote sensing imagery. Although ENMAP 
and PRISMA differ in spectral resolution, they share the same 
spatial resolution. CORSA is able to recognize that 
hyperspectral imagery appears semantically similar when 
captured from the same altitude. The difference in spectral 
resolution accounts for the colour inaccuracies seen in output 
shown in Fig. 4. These are corrected through minimal fine-
tuning, as demonstrated in Fig. 5. 

C. Downstream applications 

CORSA’s capabilities as a foundation model have been 
demonstrated on a range of downstream applications, 
including super-resolved parcel delineation, flood detection, 
change detection, and landcover classification. Further details 
on the specific architectures and performances of the 
downstream applications are available in the dedicated paper 
by B. Beusen and A. Luyts [2]. 

These applications are typically not a fine-tuned versions 
of the CORSA autoencoder, but rather new decoder models 
designed to process compressed representation as input for 
task-specific computations. The architectures and sizes of 
these decoder components vary according to the requirements 
of the application, although the overall configuration remains 
consistent. 

This setup enables the simultaneous execution of both  
compression and high-level data processing on imagery. 
Multiple downstream applications can also be run in parallel 
using a single CORSA encoder to extract semantically 
meaningful representations. 

III. HARDWARE IMPLEMENTATION 

No compression solution designed for satellites can 
remain confined to a laptop in a research lab. Accordingly, 
most recent efforts have focused on deploying existing models 
on space-grace, or the very least radiation-tolerant, hardware. 
The Nvidia Jetson Orin NX 16GB quickly emerged as a 
popular hardware solution for on-board deep learning 
algorithms. CORSA for ENMAP has been successfully 
deployed on the Jetson [3], as well as on the Hailo 8 and 8L 
[4]. 

To further showcase the versatility of our edge foundation 
model, we have implemented an CORSA-based downstream 
application on the Jetson. This includes the CORSA encoder, 
which also serves as the compression model, and the decoder 
head tailored to a specific application. This configuration 
enables simultaneous data compression and high-level 
processing. Such flexibility is particularly valuable in low-
certainty detection scenarios, where both the detection output 
and the compressed imagery can be downlinked together. 

The implementation blueprint for both the CORSA 
encoder and the application-specific decoder is reusable 
across any application developed within this framework. At a 
minimum, deployment requires the model to be stripped of 
auxiliary training components, converted to ONNX format, 
and optimised using the TensorRT framework. 

One of the most critical aspects of on-board 
implementation is energy constraint. On Earth, the energy 
consumption of a deep learning model is rarely a primary 
concern, except when environmental impact becomes 
significant. At the edge, however, space, memory, and 

  

Fig. 3. PRISMA imagery in 

false-RGB colours 

Fig. 4. Reconstruction of the input 

of Fig. 3. by a CORSA model 
trained on ENMAP without 

additional training  

Fig. 5. Ouput of a CORSA model 

trained on ENMAP and finetuned 

on less than 10 images of PRISMA 



available energy are fundamental considerations. The Jetson 
provides several predefined power profiles for testing in 
different conditions. However, their labels (10W, 15W, and 
15W) are somewhat misleading, as they do not strictly limit 
the Jetson’s power consumption. Instead, they affect the 
number of active CPU cores and the maximum frequencies of 
various components, as detailed in Table II. 

TABLE II.  DEFAULT JETPACK POWER PROFILES 

Power Budget 10W 15W 25W 

CPU ONLINE 4 4 8 

CPU MAX FREQ 1190.4 MHz 1420.8 MHz 1497.6 MHz 

GPU MAX FREQ 612 MHz 612 MHz 408 MHz 

 

As previously mentioned, the actual power consumption 
of the Jetson during computation is not bounded by the 
nominal values of its power profile. Table III presents the 
model’s throughput, energy consumption, and overall 
efficiency, averaged over multiple runs. These values 
represent upper estimates, as the tests did not explore the 
maximum batch size supported by the Jetson, which would 
likely result in increased throughput and improved efficiency. 

At the time of writing, a land cover classification model 
has been ported to the Jetson platform without any loss in 
accuracy, as expected. The CORSA S-2 encoder (10 bands) 
was used to generate compressed representations, which were 
then passed to an application-specific decoder. In principle, if 
only the end application were required, without the need to 
downlink the compressed data, the quantisation step could be 
omitted entirely, thereby increasing inference speed. 
However, the tests were conducted under worst-case 
assumptions, where limited memory and computational 
resources, due to the presence of other critical applications, 
prevent the execution of both operations in quick succession. 
The corresponding performance figures are presented in Table 
III. 

TABLE III.  HARDWARE PERFORMANCE 

 
Encoding + Processing 

10Wi 15Wi 25Wi 

Average time (ms) 5.05 5.3 4.6 

Throughput (MP/ms) 3.24 3.24 3.82 

Energy consumptionj (W) 10.2 11.0 11.1 

Efficiency (MP/ms/W) 0.319 0.294 0.344 

i. Default power profile on the Jetson, not directly indicative of power consumption, see Table II 

j. The real energy consumption measured on the Jetson 

 

The data in Table III reveal a noteworthy and perhaps 
counterintuitive pattern: a more powerful power profile does 
not necessarily yield greater efficiency. In addition, power 
consumption remains relatively stable across all profiles. 
These findings suggest the presence of a computational 
bottleneck, which is suspected to be the argmax operation 
used during codebook mapping and reverse mapping. 

IV. CONCLUSION AND DISCUSSION 

In this paper, we have demonstrated the deployment of a 
CORSA encoder alongside an application-specific decoder. 

Even under worst-case conditions (a batch size of one, with 
compression followed by downstream data processing) the 
system achieves high efficiency, placing it firmly within the 
domain of real-time applications. 

We have also identified a bottleneck in the deployment 
pipeline: the argmax operation. This bottleneck has redirected 
our research focus away from model distillation and pruning 
towards addressing the so-called ‘argmax problem’. The 
Jetson platform is sufficiently powerful to handle deep 
learning models with ease, surpassing even the performance 
benchmarks described in X’s paper. As a general observation, 
a CORSA encoder trained on hyperspectral imagery is 
significantly more computationally intensive than one trained 
on multispectral imagery. In our deployment, the application-
specific decoder remains relatively lightweight compared to 
the ENMAP-trained encoder. The reduced size of the model 
has made the bottleneck imposed by the argmax operation 
even more pronounced. 

Notably, the codebook mapping process cannot be 
omitted, as doing so would eliminate the model’s compression 
capabilities, an essential feature for on-board operations. 

Several approaches to mitigating this bottleneck are 
currently under investigation. One potential solution involves 
replacing the argmax operation with an alternative 
mechanism, although the expected performance gains from 
this substitution are likely to be minimal. A second approach 
involves modifying power profiles and reconfiguring 
programmable hardware to allocate greater computational 
capacity to the argmax operation; this is currently the most 
promising direction. Additionally, the team has recently 
begun exploring alternative training and mapping strategies 
that could eliminate the need for the argmax operation 
entirely. 
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ANNEXES 

A. Point-Spread-Function in a non-optical system 

The Point Spread Function (PSF) describes how an 
imaging system responds to a point source of light or 
radiation. It was originally developed for use in optical 
systems. However, with the emergence of image 

https://doi.org/10.5281/zenodo.13863200


reconstruction techniques, the PSF has also come to serve as 
a measure of image sharpness, or conversely, its blurriness. 

The PSF used to assess the reconstruction quality of the 
models in this technical paper is not the traditional physical 
PSF, but rather an approximation. Specifically, it is calculated 
as the average energy contained in the peaks of the two-
dimensional pseudo-point spread functions for each spectral 
channel. These pseudo-PSFs are derived from the inputs and 
outputs of the models, approximating the system's response if 
it were a conventional optical device. 

Given the consistently high SSIM scores achieved by our 
models, this PSF approximation is used both as an indicator 
of image sharpness and as a proxy for the visual quality of the 
reconstructed outputs. 

B. CORSA vs CCSDS 123.0-b-2/3 

A clear illustration of the differences between classical and 
statistical compression methods can be found in the 
comparison with the CCSDS 123.0-B-2/3 algorithms, which 
include both lossless and near-lossless variants. These are 
considered the gold standard for hyperspectral compression at 
the time of writing. Unlike the CORSA encoder, the CCSDS 
algorithm does not exploit intra-channel correlations, or at 
least not to the same extent as CORSA. This results in more 
predictable error estimates, but prevents the CCSDS approach 
from achieving the same compression ratios as CORSA, as 
shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deep learning or artificial intelligence-based compression 
algorithms cannot be evaluated using the same criteria as 
classical methods. Guaranteeing an upper bound on 
reconstruction error typically comes at the cost of exploiting 
the more complex correlations present in the data. 

For this reason, fallback mechanisms such as lossless 
algorithms and out-of-distribution detection are essential for 
the operational deployment of models like CORSA. 

 

 

 

 

 

 

 

Fig. 6. Evolution of the reconstruction accuracy (measured by the PSNR) 

against the compression ratio for the CCSDS 123.0-b algorithm and CORSA 

model on ENMAP data 


