
SatNOGS-COMMS: An Open-Source
Communication Subsystem for CubeSats

Manolis Surligas∗, Agis Zisimatos∗, Aris Nikas∗, Dimitris Moustroufis∗,
Pierros Papadeas∗, Manthos Papamathaiou∗, Daniel Bita∗,

Dimitris Zournatzis∗, Victoria Malyshkina∗
∗Libre Space Foundation, Athens, Greece

Abstract—SatNOGS-COMMS is an open-source,
open-hardware communications subsystem for Cube-
Sats, developed by the Libre Space Foundation
in collaboration with the European Space Agency
(ESA). This innovative system combines advanced
hardware and software to meet the challenges of
CubeSat missions while promoting accessibility and
flexibility through an open ecosystem. The COMMS
transceiver provides separate half-duplex RF fron-
tends for UHF and S-Band operation. It adheres to
CCSDS recommendations for Category A spacecraft,
supporting user-selectable framing schemes (CCSDS,
IEEE 802.15.4, AX.25). Baseband modulations include
BPSK, QPSK, MSK, and FSK, with data rates up
to 50 kbps (UHF) and 1 Mbps (S-Band), depending
on the chosen modulation and coding. The UHF
frontend operates between 395 and 450 MHz, while
the S-Band operates at 2025–2110 MHz (uplink) and
2200–2290 MHz (downlink). Both frontends offer up
to 32 dBm transmit power, complying with SFCG
21–2R4 emissions standard.

I. INTRODUCTION

In our previous work presented in [1], we pro-
vided details about the hardware architecture of
the transceiver, its capabilities, the performance
characteristics of the transmitter, as well as the sys-
tem’s power consumption under various workload
scenarios.

In this paper, we present the software architec-
ture that controls the entire transceiver, the design
considerations that enable seamless integration and
extensibility in diverse mission contexts, as well
as the performance characteristics of the UHF and
S-Band receivers. In addition, this paper provides
details about the automated testing procedure, and
the integration of the YAMCS [2] mission control
center.

II. FLIGHT SOFTWARE ARCHITECTURE

A. Firmware Architecture and Platform Abstraction
The main control firmware of the SatNOGS-

COMMS system runs on the STM32H743 [3]
Micro-Controller Unit (MCU). It is responsible for
interfacing with all available board subsystems, col-
lecting and analyzing telemetry data, and executing
autonomous actions to ensure the optimal operation
and protection of the transceiver.

The reference firmware that ships with the board
is based on Zephyr-RTOS [4] version 4.1.0. How-
ever, to maximize flexibility and accommodate
varying mission requirements, the firmware com-
ponents have been designed to remain agnostic to
the underlying RTOS. This design decision enables
the firmware to be adapted for use with alterna-
tive real-time operating systems, depending on user
preference or mission constraints.

At the heart of this design lies the libsatnogs-
comms [5] library, a platform-agnostic C++ library
that provides full control over all board components.
It exposes a comprehensive API and encapsulates
the entire board configuration within a singleton
instance, ensuring that all subsystems are correctly
initialized and easily accessible from any part of the
firmware, including across concurrent tasks (Fig-
ure 1).

To support RTOS independence, the library uses
C++ polymorphism. Platform-specific operations,
such as DMA handling, message queues, or pe-
ripheral access, are defined as pure virtual meth-
ods, requiring the user to implement them based
on their chosen platform. This abstraction layer
allows developers to adopt any RTOS or bare-metal

Fig. 1: Software components architecture

system, not just Zephyr-RTOS, with minimal effort
without requiring deep knowledge of the underlying
hardware design.

One of the typical challenges in embedded C++
development is the use of Standard Template Li-
brary (STL) containers, which often rely on dy-
namic memory allocation. This can lead to memory
fragmentation and non-deterministic behavior, mak-
ing them unsuitable for real-time or safety-critical
applications. To address this, libsatnogs-comms in-
tegrates the etlcpp [6], a header-only library that
replicates much of the STL’s functionality using a
static memory model. This approach ensures pre-
dictable memory usage and deterministic execution,
which are essential for embedded mission-critical
systems.

B. Configuration and Customization

The SatNOGS-COMMS software offers a pow-
erful and flexible interface for configuration and
customization, addressing a wide range of mission-
specific requirements. This is achieved by taking
advantage of the Kconfig system [7] and devicetree
overlays [8] provided by the Zephyr-RTOS.

Kconfig enables clear and structured compile-
time initialization of numerous firmware parame-
ters. Although most of these parameters can be
adjusted during runtime via telecommands, their
initial defaults and reset values are determined by
the Kconfig configuration. This approach ensures

both flexibility during operations (e.g. qualifica-
tion vs flight configuration, development, etc.) and
consistency in baseline behavior. Figure 3 depicts
some of the configuration options available from
the corresponding menu interface.

In contrast, I/O port configuration is handled
through devicetree overlays. SatNOGS-COMMS in-
cludes a comprehensive set of predefined overlays,
covering many common scenarios and tailored to
the hardware capabilities. These overlays define, for
example, the pin assignments for UART and I2C
interfaces on the PC104, antenna deployment I/O
options, and additional logging UART ports (e.g.
Listing 1).

The overlay system is designed to be highly
flexible and easily extensible. If the built-in overlays
do not fully meet the requirements of a mission,
users can easily provide custom overlay files to the
build system. This capability allows for seamless
adaptation of the firmware to new hardware setups
or evolving mission needs.

C. Adding Mission-Specific Features

While the SatNOGS-COMMS reference
firmware is capable of operating out-of-the-box
without any modifications, this setup typically
serves as a starting point. In practice, every
mission presents unique requirements, necessitating
tailored behavior and additional functionality. To
accommodate this, the firmware architecture

Fig. 2: IO messages handling and routing

/*
* Sets the UHF antenna in GPIO mode using the

* pins ANT_DEP_A and ANT_DET_A

*/
&uhf_antenna {

status = "okay";
deploy-gpios = <&gpiod 13 GPIO_ACTIVE_HIGH>;
sense-gpios = <&gpioc 5 GPIO_ACTIVE_LOW>;

};

Listing 1: Overlay example for the UHF antenna
GPIO pins selection

has been intentionally designed to be easily
extensible and hackable, all without requiring
direct modifications to the original codebase.
This modular design not only simplifies code

maintenance but also encourages community
contributions, allowing all users to benefit from
enhancements through the collaborative nature of
open-source software.

The recommended approach for integrating
SatNOGS-COMMS into a mission-specific project
is by including it as a Git submodule. This setup
ensures strict version control, facilitates tracking of
upstream changes, and provides a clean workflow
for contributing improvements or bug fixes, while
simultaneously working on the mission’s custom
code. The exact process is documented at the rele-
vant section of the firmware documentation [9].

Furthermore, the firmware offers several hooks

Fig. 3: Kconfig configuration menu interface

and callbacks at strategically selected points
throughout the codebase, utilizing the available
methods of the mission class. These exten-
sion points allow developers to seamlessly inject
mission-specific functionality with minimal effort,
and without altering the core firmware. This strategy
ensures high maintainability, reusability, and consis-
tency across missions.

Behind-the-scenes, this is accomplished using the
etl::delegate class of the etlcpp library. This class
provides a type-safe and reliable mechanism for
user to define their own callbacks and register them
at the corresponding hooks. The procedure is quite
easy as the Listing 2 example shows. Users have
just to provide the implementation of the desired
callback and register it at the desired hook utilizing
the available methods of the mission class.

D. Message Handling

SatNOGS-COMMS implements a unified and
extensible framework for handling I/O messages
across all available communication interfaces. At
the core of this system is the msg arbiter class,
which serves as the central component for manag-
ing message reception, processing, and distribution
within the transceiver. The msg arbiter is respon-
sible for several key tasks:

• Receiving Messages: It listens to and collects
incoming messages from all configured input
interfaces.

#include <mission.hpp>
#include <startup.hpp>
#include <satnogs-comms-lib/board.hpp>
#include <zephyr/kernel.h>

void
post_init() {
// Do stuff

}

int
main(void)
{

// This should be the first call!
auto &startup = startup::get_instance();
auto &mission = mission::get_instance();
auto &err = error_handler::get_instance();

// Custom code here
//
// ...
// Register mission specific functionality
auto pinit

= etl::delegate<void(void)>::create<post_init>();
mission.register_post_init(pinit);

startup.prepare();

// Custom code here
//
// ...
startup.start();

// Custom add threads, calls, etc
//
// ...

}

Listing 2: Example of mission specific functionality
injection

• Message Queuing: It maintains a thread-
safe, centralized message queue for incoming
frames, ensuring safe access in concurrent sce-
narios. Additionally, each output interface is
assigned its own dedicated queue to optimize
message delivery and minimizing blocking pe-
riods waiting for the interface availability

• Message Processing:
– Local Telecommand Handling: It in-

terprets and processes telecommands in-
tended for the SatNOGS-COMMS subsys-
tem itself.

– Telecommand Forwarding: It forwards
commands to the appropriate output inter-
face for routing to the correct subsystem
elsewhere in the satellite.

This hybrid queuing architecture—where all in-
put interfaces feed into a single queue, while output
interfaces each maintain individual queues—strikes
an effective balance between memory efficiency and
throughput. It ensures that messages are processed
in a consistent, timely manner, while minimizing
overhead and maintaining scalability across diverse
mission configurations.

E. Error Handling and Logging

Error detection, reporting, and recovery are
among the most critical aspects of any satellite soft-
ware system—especially for a core subsystem like
communications. Faults must not only be handled
autonomously when possible, but also logged in
sufficient detail to enable effective remote diagnos-
tics and troubleshooting by ground operators. To
meet these needs, SatNOGS-COMMS provides a
dedicated logger class that ensures a consistent
and flexible logging strategy across the system. The
logger supports multiple log targets, including:

• SWO (Serial Wire Output) mostly used dur-
ing debugging with a debug probe

• User-selectable UART for runtime diagnostics
or propagating logs to another subsystem (e.g.
OBC)

• RAM-based ring buffer (non-persistent
across reboots) with remote telemetry support

• eMMC storage for persistent log files with
TC&C support

• Backup SRAM, retaining logs across reboots
and power cycles (if an RTC battery is avail-
able) also available by the remote telemetry
while in-flight

/**
* @brief Severity levels of exceptions

*
* @see FDIR analysis at

* https://cloud.libre.space/s/xzskpy8m3Nb54YL

*/
enum class severity : uint8_t
{
CATASTROPHIC = 0,
CRITICAL = 1,
MAJOR = 2,
MINOR = 3,
NONE = 4

};

Listing 3: Exception severity levels

For error management, SatNOGS-COMMS
adopts C++ exceptions rather than traditional
error codes. Exceptions offer a more structured
and powerful mechanism for managing faults,
enhancing code clarity, safety, and modularity.
While exception support increases firmware size,
this is well accommodated by the STM32H743,
which provides enough flash memory. Each
exception thrown by the libsatnogs-comms
control library includes detailed context and
metadata, enabling fine-grained responses to
system faults. Key features of the exception
handling system include:

• Severity Levels: Each exception is classified
based on its criticality (Listing 3), allowing
the firmware to initiate appropriate recovery or
escalation procedures.

• Source Context: Exceptions record the file-
name and line number from which they were
thrown, aiding rapid debugging and traceabil-
ity.

• Logging: Each exception defines a verbose
message providing detailed context for de-
velopment and debugging and terse, compact
message optimized for in-flight logging, con-
serving bandwidth and storage.

Based on the severity level of each exception
caught, the error reporting and recovery mechanism
after performing the proper log operations, decides

the evasive actions. These actions may just ignore
the error and retry, retry again for a specific amount
of times, or perform a reboot if the integrity of the
system cannot be guaranteed. This approach ensures
that SatNOGS-COMMS is both resilient and ob-
servable, with mechanisms in place to intelligently
and transparently handle unexpected scenarios, both
during development and live operations. A simpli-
fied example of the afforementioned mechanism is
presented at Listing 4.

void
error_handler::handle(const scl::exception &e)
{

log(e);
switch (e.get_severity()) {
case scl::exception::severity::CATASTROPHIC:
case scl::exception::severity::CRITICAL:
system_reboot();
break;

case scl::exception::severity::MAJOR:
if (m_last_errno == e.get_errno()) {

m_errno_cnt++;
} else {

m_last_errno = e.get_errno();
}
if (m_errno_cnt > CONFIG_MAX_MAJOR_ERRORS) {

system_reboot();
}
break;

default:
break;

}
}

void task_x() {
while (1) {
try {

rx_conf.freq = s.get<param::SBAND_RX_FREQ>();
radio.rx_async(radio::interface::SBAND, rx_conf);

} catch (const scl::pll_ls_exception &e) {
/* Maybe we can recover! */
auto &err = error_handler::get_instance();
err.handle(e);
radio.enable(false);
radio.enable(true);

} catch (const scl::radio_exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);

} catch (const std::exception &e) {
auto &err = error_handler::get_instance();
err.handle(e);

}
}

Listing 4: Error recovery simplified example

F. Bootloader
The bootloader used in SatNOGS-COMMS is

MCUBoot [10], a widely adopted, secure, and re-
liable bootloader designed for embedded systems.

Among its key advantages are support for multiple
firmware versions, robust integrity verification via
cryptographic hashing, rollback capabilities, and the
ability to verify asymmetrically signed firmware im-
ages, enhancing overall system security. MCUBoot
supports several methods for performing firmware
upgrades. For SatNOGS-COMMS, the selected ap-
proach is Execute-In-Place (XIP). In this scheme,
flash memory is partitioned into multiple slots of
fixed, known size, with each slot capable of storing
an independent firmware image. At startup, MCU-
Boot performs a validity check on each firmware
slot using the SHA-256 fingerprint of the firmware
by comparing the slot contents and the precom-
puted fingerprint stored in the header section of
the firmware. If the verification passes, the cor-
responding firmware is executed directly from its
storage address in memory, eliminating the need
for copying or swapping images. If a slot fails
validation, MCUBoot automatically proceeds to the
next available valid firmware image. This method
increases system reliability, even in cases where
specific flash regions may be physically damaged,
as the bootloader can continue booting from one of
the remaining valid slots. The primary trade-off of
XIP is that each firmware binary must be specifi-
cally compiled for the memory address associated
with its target slot. To mitigate this complexity, the
SatNOGS-COMMS codebase includes tooling that
simplifies slot-specific firmware builds. Developers
can specify the desired slot number in the build sys-
tem and the resulting image can then be directly sent
to the transceiver without additional configuration.

III. MISSION CONTROL

SatNOGS-COMMS uses the YANCS frame-
work [2] for mission control operations, utilizing
the XTCE (XML Telemetric and Command Ex-
change) schema as specified in CCSDS 660.0-B-
2 [11]. While this standards-based architecture does
not necessarily simplify the mission database, it
greatly expands its capabilities, ensures interoper-
ability across diverse ground infrastructures, and
facilitates broader collaboration on future mission
requirements.

Fig. 4: Decoded health telemetry packet visualiza-
tion in YAMCS web interface

Telemetry and telecommand (TM/TC) data are
encapsulated in CCSDS-compliant packets with
standardized header fields such as version, Ap-
plication Process Identifier (APID), and sequence
count. These fields enable the SatNOGS-COMMS
firmware to efficiently parse, filter, and route in-
coming commands, including discriminating by
SPACEID in multi-spacecraft scenarios and by
APID ranges for mission-specific functionality.

YAMCS fully supports XTCE-compliant defini-
tions, automatically parsing parameters, containers,
calibrators, and limit configurations. Notably, it
accommodates multiple calibration methods (linear,
polynomial, exponential, switch-based), enabling
data transformations to be performed on the ground
rather than on the satellite. This approach preserves
raw telemetry for potential debugging and min-
imizes on-board complexity. Furthermore, XTCE
alarm configurations allow automated fault detec-
tion using five standardized severity levels (watch,
warning, distress, critical, severe), thereby improv-

Fig. 5: Set of telecommands in YAMCS web inter-
face

ing operator situational awareness and accelerating
decision-making during nominal and off-nominal
operations.

The system supports both RF and CAN FD
transport layers, which are connected to YAMCS
through a custom gateway, as YAMCS natively sup-
ports only TCP and UDP protocols. Furthermore,
YAMCS features a plugin-based architecture that
simplifies the incorporation of additional data links
and custom interfaces.

Internally, YAMCS stores all mission data in a
RocksDB-backed archive, serializing packet entries
via Protocol Buffers and indexing them by times-
tamp and parameter ID. This architecture serves as
a foundation for the system’s testing framework and
enables advanced features such as real-time visual-

Fig. 6: Set of telemetry parameters in YAMCS web
interface

ization, historical data acquisition and efficient data
export through YAMCS web interface or API.

Meanwhile, on the firmware side, each telecom-
mand is represented by a dedicated class that
includes a deserialization method, which uses
etl::bit stream [12] for bit-level data manipulation.
By operating on statically allocated arrays and
avoiding dynamic memory, these bit-streams de-
liver predictable, deterministic performance, mak-
ing them ideal for real-time, resource-constrained
embedded space applications.

IV. TESTING

SatNOGS-COMMS also ships with powerful
and extensive testing suite. This suite utilizes the
Python-based YAMCS Client [13] in conjunction
with Robot Framework [14], providing a fully au-

Fig. 7: Robot framework web-based report

tomated HIL (Hardware-in-the-Loop) testing suite
out of the box. The project uses this testing suite
throughout the development by integrating it with
the Gitlab CI/CD process.

Robot Framework offers a powerful and expres-
sive syntax that simplifies the creation of multiple
test cases, while also enabling advanced customiza-
tion through native integration with the Python pro-
gramming language. Listing 5 illustrates a simpli-
fied test case designed for validating the power sub-
system of the transceiver. This test checks whether
the power-related telemetry values reported by the
transceiver fall within predefined acceptable ranges.
To retrieve these values, the Robot test case issues
the appropriate telecommand using the YAMCS
Python interface, as previously discussed.

Robot framework produces also extensive reports
and log outputs in multiple formats (pdf, html, text)
containing a plethora of information including the
exact execution time, the duration, the result as well
as the failing criteria in case of failures. An example
of such a report can be found in Figure 7.

The development of the testing suite is, and
will continue to be, closely aligned with both the
ongoing software development and future hardware

*** Settings ***
Resource ${CURDIR}/../common.resource
Variables ${INPUTS}/basic/02__telemetry_basic.yaml

Test Tags telemetry basic

*** Variables ***
@{power_keys}
... vin
... iin
... fpga_current
... d_3v3_current
... rf_5v_current
... emc1702_power
... efuses_power
... vbat

*** Test Cases ***
Issue Basic Telemetry and Fetch Power

${ct} Issue Command and Get Time ${cmd}[tlm_req] ${payload}
${res} Fetch Parameter ${params}[power] ${ct}
Set Suite Variable ${res}

Validate Boolean Power States
Dictionaries Should Be Equal
... ${res}
... ${expected_bool}
... ignore_keys=${power_keys}

Validate Power Limits
FOR ${key} IN @{power_keys}

Validate Param In Limits ${key} ${res}
END

*** Keywords ***
Validate Param In Limits

[Arguments] ${key} ${status}
${val} Set Variable ${status}[${key}]
${lim} Set Variable ${${key}_limits}
${lower} Set Variable ${lim}[lower]
${upper} Set Variable ${lim}[upper]
Log \n[${key}] = ${val}, expected range: ${lower} - ${upper}
Should Be True ${lower} <= ${val} and ${val} <= ${upper}

Listing 5: 02__telemetry_basic.robot

modifications or customizations. By integrating ex-
tensive testing into the platform, we are able not
only to identify and resolve bugs during the soft-
ware lifecycle, but also to support and streamline
the production and manufacturing process. This is
achieved by providing hardware engineers with an
automated testing framework that offers valuable
insights into potential faults. Furthermore, users
can leverage this infrastructure to validate their
own setup and effortlessly implement custom test
cases, enabling seamless integration of SatNOGS-
COMMS into their satellite with minimal overhead.

V. PERFORMANCE

A. Receiver Performance Characterization

In our previous work [1], mainly the transmis-
sion performance metrics were presented. In this
paper, we extend the system characterization with
the receiver performance too. To evaluate the per-

formance of the receiver, a series of controlled
experiments were conducted. The test parameters
were carefully selected to closely replicate real-
world conditions likely to be encountered during
a LEO mission. These parameters are presented in
Table I. Note that for the UHF Uplink the worst case
of ground station transmission power is taken into
consideration. This should be at the 401-403 MHz
band, where the 5.264A rule of the ITU regulations
is in effect. The 5.264A dictates that the maximum
EIRP for any earth station should not exceed 7 dBW
in any 4 kHz band.

The first set of experiments focuses on character-
izing the sensitivity of the receiver by measuring the
Frame Delivery Ratio (FDR) under varying signal
levels at the input of the receiver. A reference
ground station was employed to transmit a total of
1000 frames containing randomized data.

For the UHF interface, both FSK (modulation
index 1) and MSK modulation schemes were tested
at a bitrate of 50 kbps. For the S-Band interface,
MSK modulation was used with bitrates of 100,
200, and 400 kbps, respectively.

Across all experiments, the following communi-
cation parameters were kept fixed:

• Preamble: 32-bits
• Synchronization Word: CCSDS Attached

Sync Marker (ASM)
• Error Correction: CCSDS Reed-Solomon

RS(255,223)
• Randomization: CCSDS randomizer
• Frame Size: 512 bytes for UHF, 1024 bytes

for S-Band

B. Doppler Tolerance Evaluation

The second set of experiments aims to evaluate
the receiver’s ability to handle Doppler frequency
offsets typical of a spacecraft in LEO, assuming
no Doppler compensation is applied by the ground
station. To ensure representative results, the input
signal levels for these tests were selected based
on the sensitivity thresholds identified in the pre-
vious experiments. Specifically, the lowest input
level at which the receiver exhibited no significant
degradation in FDR. These levels are summarized
in Table II.

TABLE I: Link Budget Parameters for UHF and S-Band Uplink

Transmitter - Parameters UHF Uplink S-Band Uplink

Transmitter Power (dBm) 23.50 23.50 36.00 36.00
Transmitter Power (dBW) -6.50 -6.50 6.00 6.00
Antenna circuit loss (RFDN) (dB) -1.00 -1.00 -1.00 -1.00
Antenna gain (dBi) 14.00 14.00 35.80 35.80
∆3dB antenna (deg) 30.00 30.00 5.00 5.00
EIRP (dBW) 6.50 6.50 40.80 40.80
EIRP (dBm) 36.50 36.50 70.80 70.80

Path - Parameters

Elevation angle (deg) 5.23 25.03 5.23 25.15
Altitude (km) 600.00 600.00 600.00 600.00
Slant Range (km) 2192.92 1125.25 2192.92 1121.96
Free Space Loss (dB) -151.35 -145.56 -165.75 -159.92
Atmospheric/Ionospheric Loss (dB) -0.13 -0.03 -0.45 -0.10
Rainfall Loss (dB) -0.003 -0.001 -0.002 -0.002
Total Path Loss (dB) -151.48 -145.59 -166.20 -160.02

Receiver - Parameters

Polarization loss (dB) -3.00 -3.00 -3.00 -3.00
Pointing loss (dB) 0.00 0.00 -1.50 -1.50
∆3dB antenna (deg) close to omni close to omni 60.00 60.00
Pointing accuracy (deg) ∼20 ∼20 ∼20 ∼20
Antenna circuit loss (RFDN) (dB) -1.00 -1.00 -1.00 -1.00
Antenna gain (dBi) 1.90 1.90 6.50 6.50
Total gain antenna(dB) -2.10 -2.10 1.00 1.00
Received Signal (dBm) -117.08 -111.19 -94.40 -88.22

TABLE II: Input Power Levels for Doppler Testing

Interface Modulation and Bitrate Input Power Level (dBm)

UHF FSK @ 50 kbps −117
UHF MSK @ 50 kbps −112
S-Band MSK @ 100 kbps −108
S-Band MSK @ 200 kbps −105
S-Band MSK @ 400 kbps −96

As illustrated in the corresponding figures, the
receiver demonstrates robust performance across
the majority of Doppler-induced frequency offsets
encountered during a typical satellite pass.

However, for the UHF interface and the S-Band
MSK at 100 kbps, a noticeable degradation in per-
formance was observed under extreme offset con-
ditions. This behavior has been traced to a specific
digital filter configuration within the transceiver.

Adjusting this filter to a more relaxed setting
is expected to improve Doppler tolerance and al-
low the receiver to handle the full offset range.
However, this improvement comes at the cost of
approximately 3 dB reduction in sensitivity.

VI. CONCLUSION

In this paper, we presented the ongoing de-
velopment of the SatNOGS-COMMS transceiver,
including its software architecture and recent ad-
vancements in testing infrastructure. Additionally,
we provided a preliminary characterization of the
receiver’s performance for selected modulation and
coding schemes. Although this evaluation is not yet
exhaustive, it offers valuable insights into the sys-
tem’s capabilities and potential. As an open-source
and open-hardware initiative, SatNOGS-COMMS
continues to evolve through active community con-
tributions and ongoing development. The project’s

124 120 116 112 108
Input Signal Level (dBm)

0

25

50

75

100

FD
R

Modulation
FSK 50 kbps
MSK 50 kbps

Fig. 8: UHF RX performance

115 110 105 100
Input Signal Level (dBm)

0

25

50

75

100

FD
R

Modulation
MSK 100 kbps
MSK 200 kbps
MSK 400 kbps

Fig. 9: S-Band RX performance

development can be tracked through its GitLab
repositories [15].

REFERENCES

[1] M. Surligas, A. Zisimatos, I. Daradimos, A. Nikas, D. M. P.
Papadeas, M. Papamathaiou, A.-P. Damkalis, V. Tsili-
giannis, and V. Malyshkina, “Satnogs-comms: Turnkey
nanosatellite communications,” Small Satellite Conference,
2024.

[2] “Yamcs Mission Control software.” [Online]. Available:
https://yamcs.org

[3] STMicroelectronics, “RM0433 Reference Manual for
STM32H742, STM32H743/753 and STM32H750.”

[4] “Zephyr-RTOS project.” [Online]. Available: https://www.
zephyrproject.org

15.0 12.5 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Frequency Offset (kHz)

0

25

50

75

100

FD
R

Modulation
FSK 50 kbps
MSK 50 kbps

Fig. 10: UHF RX performance versus Frequency
Offset

70 60 50 40 30 20 10 0 10 20 30 40 50 60 70
Frequency Offset (kHz)

0

25

50

75

100
FD

R

Modulation
MSK 100 kbps
MSK 200 kbps
MSK 400 kbps

Fig. 11: S-Band RX performance versus Frequency
Offset

[5] Libre Space Foundation, “SatNOGS-COMMS
platform independent Control Library.” [On-
line]. Available: https://gitlab.com/librespacefoundation/
satnogs-comms/libsatnogs-comms

[6] “Embedded Template Library: A C++ template library
for embedded applications.” [Online]. Available: https:
//www.etlcpp.com

[7] “Zephyr-RTOS Configuration System.” [Online]. Avail-
able: https://docs.zephyrproject.org/latest/build/kconfig/
index.html

[8] “Zephyr-RTOS Devicetree.” [Online]. Available: https:
//docs.zephyrproject.org/latest/build/dts/index.html

[9] “SatNOGS-COMMS: Adding Mission specific features.”
[Online]. Available: https://librespacefoundation.gitlab.
io/satnogs-comms/satnogs-comms-software-mcu/group

https://yamcs.org
https://www.zephyrproject.org
https://www.zephyrproject.org
https://gitlab.com/librespacefoundation/satnogs-comms/libsatnogs-comms
https://gitlab.com/librespacefoundation/satnogs-comms/libsatnogs-comms
https://www.etlcpp.com
https://www.etlcpp.com
https://docs.zephyrproject.org/latest/build/kconfig/index.html
https://docs.zephyrproject.org/latest/build/kconfig/index.html
https://docs.zephyrproject.org/latest/build/dts/index.html
https://docs.zephyrproject.org/latest/build/dts/index.html
https://librespacefoundation.gitlab.io/satnogs-comms/satnogs-comms-software-mcu/group__mission-specific.html
https://librespacefoundation.gitlab.io/satnogs-comms/satnogs-comms-software-mcu/group__mission-specific.html

mission-specific.html
[10] “MCUboot Bootloader.” [Online]. Available: https://docs.

mcuboot.com
[11] Consultative Committee for Space Data Systems, “XML

Telemetric and Command Exchange–Version 1.2,” CCSDS
660.0-B-2, Blue Book, 2020, available at: https://public.
ccsds.org/Pubs/660x0b2.pdf.

[12] “Embedded Template Library (ETL) Bit Streams.” [On-
line]. Available: https://www.etlcpp.com/bit stream.html

[13] “Python YAMCS Client.” [Online]. Available: https:
//docs.yamcs.org/python-yamcs-client/

[14] “Robot Framework: automation and testing framework.”
[Online]. Available: https://robotframework.org/

[15] Libre Space Foundation, “SatNOGS-COMMS repos-
itories.” [Online]. Available: https://gitlab.com/
librespacefoundation/satnogs-comms

https://librespacefoundation.gitlab.io/satnogs-comms/satnogs-comms-software-mcu/group__mission-specific.html
https://docs.mcuboot.com
https://docs.mcuboot.com
https://public.ccsds.org/Pubs/660x0b2.pdf
https://public.ccsds.org/Pubs/660x0b2.pdf
https://www.etlcpp.com/bit_stream.html
https://docs.yamcs.org/python-yamcs-client/
https://docs.yamcs.org/python-yamcs-client/
https://robotframework.org/
https://gitlab.com/librespacefoundation/satnogs-comms
https://gitlab.com/librespacefoundation/satnogs-comms

	Introduction
	Flight Software Architecture
	Firmware Architecture and Platform Abstraction
	Configuration and Customization
	Adding Mission-Specific Features
	Message Handling
	Error Handling and Logging
	Bootloader

	Mission Control
	Testing
	Performance
	Receiver Performance Characterization
	Doppler Tolerance Evaluation

	Conclusion
	References

